微生物光电能代谢新途径与能量转化新体系

鲁安怀1,* , 孟令子1 , 刘 娟2 , 刘芳华3 , 王 博4 , 曾翠平4 , 汤 佳3 , 陈旻辉3 , 钟 超2 , 刘 佳1 , 李 艳1 , 丁竑瑞1
1北京大学地球与空间科学学院, 北京 100871 2北京大学环境科学与工程学院,北京 100871 3广东省科学院生态环境与土壤研究所, 广州 510650 4中国科学院深圳先进技术研究院, 深圳 518055

摘 要:

本文综述了微生物光电能代谢的新途径与能量转化的新体系。在总结陆地“矿物膜”光电效应的基础上,我们创新性地提出了“水圈透光层天然光催化系统”的概念,并深入探讨了水圈透光层中半导体矿物与微生物协同驱动元素循环的机制。研究深化了对微生物能量获取新途径的认知,揭示了低能量、寡营养水生生境中微生物代谢途径和能量获取、储存方式的多样性。此外,还探讨了微生物直接和间接摄取光电子的机制,以及光电子对胞内能量转换和合成代谢的影响。也讨论了提高光电能量转换效率的策略,并对未来研究方向提出了展望,强调了微生物光电能代谢在可再生能源开发和环境治理中的重要性。

通讯作者:鲁安怀 , Email:ahlu@pku.edu.cn

New pathways of microbial photoelectrochemical metabolism and new systems for energy transformation
LU An-Huai1,* , MENG Ling-Zi1 , LIU Juan2 , LIU Fang-Hua3 , WANG Bo4 , ZENG Cui-Ping4 , TANG Jia3 , CHEN Min-Hui3 , ZHONG Chao2 , LIU Jia1 , LI Yan1 , DING Hong-Rui1
1Beijing Key Laboratory of Mineral Environmental Function, Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, China 2The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China 3National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro- environmental Pollution Control and Management, Institute of Ecoenvironmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China 4CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

Abstract:

This review article discusses new pathways of microbial photoelectrochemical metabolism and new systems for energy transformation. Building upon the photoelectric effect of terrestrial "mineral coatings", we innovatively propose the concept of the "marine photic zone natural photocatalytic system" and delve into the mechanisms by which semiconductor minerals and microorganisms synergistically drive elemental cycles within the marine photic zone. The study deepens the understanding of new pathways for microbial energy acquisition, revealing the diversity of microbial metabolic pathways and energy capture and storage methods in low-energy, oligotrophic aquatic habitats. Additionally, the mechanisms by which microorganisms directly and indirectly assimilate photoelectrons, as well as the impact of photoelectrons on intracellular energy conversion and synthetic metabolism, have been explored. Strategies to improve the efficiency of photoelectric energy conversion have been discussed, and future research directions have been outlined, emphasizing the importance of microbial photoelectrochemical metabolism in the development of renewable energy and environmental management.

Communication Author:LU An-Huai , Email:ahlu@pku.edu.cn

Back to top