《生命科学》 2025, 37(10): 1212-1227
人工智能时代跨生境的微生物组研究:环境的约束与生命的记录
摘 要:
地球水圈生境( 如浅海、深海、湖泊、冰川等) 连接了地球的表层与深部,蕴藏着丰富且多样的微生物,其中部分水圈生境( 如深海、高原湖泊、冰川等) 还具有极端环境的理化因素,如剧烈变化的温度、压力、pH、盐度等,是研究微生物物种与代谢多样性、解析微生物分布和生态驱动,并反演其中记录的不同圈层的动力学过程( 如洋流、板块运动等) 的绝佳研究对象。随着近年来水圈生境微生物取样和分析技术的飞速发展,已经积累了大量水圈微生物环境基因组序列信息及其对应的环境理化参数,为全面解析水圈微生物特征及环境影响提供了有力支撑。本文全面综述了过去十年间国内外水圈生境微生物研究计划的进展、大数据获取与分析的变化趋势以及环境微生物理论的迭代,讨论了微生物物种对环境变化的记录及微生物代谢体现的环境约束,并展望了人工智能给解析跨生境的水圈微生物的适应演化机制带来的新机遇。
通讯作者:赵维殳 , Email:zwsh88@sjtu.edu.cn 凌鋆超 , Email:lingyunchao@sinh.ac.cn 李化炳 , Email:hbli@niglas.ac.cn 毛冠男 , Email:maogn@lzu.edu.cn 周冰心 , Email:bingxin.zhou@sjtu.edu.cn
Abstract:
Earth's aquatic habitats (e.g., shallow marine, deep seas, lakes, glaciers) connect the surface and deep layers of our planet, harboring rich and diverse microbial ecosystems. Some aquatic habitats (e.g., deep seas, alpine lakes, and glaciers) also exhibit extreme physicochemical factors including dramatic variations in temperature, pressure, pH, salinity, making them excellent subjects for studying microbial diversity in both species and metabolism, analyzing microbial distribution and ecological drivers, and reconstructing the dynamic processes of different Earth spheres (e.g., ocean currents and tectonic plate movements) recorded within them. With the rapid development of microbial sampling and analytical techniques in aquatic habitats in recent years, substantial amounts of aquatic microbial environmental genomic sequence information and corresponding environmental physicochemical parameters have been rapidly accumulated, providing strong support for comprehensive analysis of aquatic microbial characteristics and environmental interactions. This review comprehensively summarizes the progress of international and domestic aquatic habitat microbial research programs over the past decade, the changing trends in big data acquisition and analysis, and the evolution of environmental microbial theories. This review discusses the records of environmental changes by microbial species and the environmental constraints reflected by microbial metabolism, and prospects the new opportunities that artificial intelligence brings to analyze the adaptive evolutionary mechanisms of cross-habitat aquatic microbes.
Communication Author:ZHAO Wei-Shu , Email:zwsh88@sjtu.edu.cn LING Yun-Chao , Email:lingyunchao@sinh.ac.cn LI Hua-Bing , Email:hbli@niglas.ac.cn MAO Guan-Nan , Email:maogn@lzu.edu.cn ZHOU Bing-Xin , Email:bingxin.zhou@sjtu.edu.cn