《生命科学》 2024, 36(9): 1141-1148
叶绿素合成调控研究进展
摘 要:
万物生长靠太阳,植物、海洋藻类、光合细菌等利用光合作用将光能转变成为化学能为地球生物提供能量。叶绿素、类胡萝卜素等光合色素在捕光天线复合体中吸收光能以驱动电子传递,是光合作用中不可或缺的组分。因此,研究叶绿素生物合成调控机制是提高光合作用效率、解决粮食危机、能源危机以及改善地球生态环境的重要科技着力点。叶绿素的重要性及其光敏感性前体物质潜在的氧化胁迫危害,使得叶绿素合成过程在多个层面被精细调控。在叶绿素合成与叶绿体发育中,光作为最重要的环境信号发挥着决定性作用,激素、叶绿体反馈信号等内源信号亦不可或缺。经过近几十年的探究,前人对叶绿素合成调控机制有了更为全面的认识,包括:(1) 叶绿素代谢酶活性的调节;(2) 叶绿体反馈信号的作用;(3) 细胞核内的转录调控。这些研究分别在叶绿体内部、叶绿体与细胞核之间、细胞核内部三个不同的空间层面揭示了叶绿素合成的调控机制。叶绿素生物合成是一个令人兴奋的领域,对植物生物学、农业、合成生物学甚至现代医学都具有重要意义。通过采用综合的多组学方法以及尖端技术和跨学科方法,可以更加全面地了解叶绿素生物合成。这种更深入的了解将使我们能够在未来更有效地利用其潜力。
通讯作者:林荣呈 , Email:rclin@ibcas.ac.cn
Abstract:
Plants, algae, and photosynthetic bacteria convert light into chemical energy through photosynthesis, providing energy for life on Earth. Photosynthetic pigments such as chlorophyll and carotenoids absorb light energy to drive electron transport, and are essential for photosynthesis. Therefore, studying the regulatory mechanism of chlorophyll biosynthesis is crucial to promoting photosynthesis efficiency, addressing the food and energy crises, and improving the Earth's ecological environment. The importance of chlorophyll and the potential oxidative stress of photosensitive precursors necessitate precise regulation of chlorophyll synthesis at multiple levels. Light plays a crucial role as the primary environmental signal, while internal signals such as hormones and chloroplast retrograde signals are also essential in chlorophyll synthesis and chloroplast development. After decades of research, we now have a more comprehensive understanding of the regulatory mechanism of chlorophyll synthesis, including the regulation of chlorophyll metabolic enzyme activity, the role of chloroplast retrograde signals, and the transcriptional regulation in the nucleus. These studies have revealed the regulatory mechanism of chlorophyll synthesis at three distinct spatial levels: within chloroplasts, between chloroplasts and nuclei, and within nuclei. Chlorophyll biosynthesis is an exciting field that holds significant implications for plant biology, agriculture, synthetic biology, and even modern medicine. By employing comprehensive multi-omics approaches alongside
cutting-edge technologies and interdisciplinary methods, we can gain a more holistic understanding of chlorophyll biosynthesis. This deeper insight will enable us to harness its potential.
Communication Author:LIN Rong-Cheng , Email:rclin@ibcas.ac.cn