叶绿素广泛存在于植物、藻类以及光合细菌中,在少量原生动物,比如绿眼虫中也发现了叶绿素的存在,其在光合作用的光能捕获以及能量传递过程中发挥着重要作用。光合细菌中的类似色素被称为细菌叶绿素,其结构有别于植物和藻类中的叶绿素,但同样具有捕获光能的作用[1-2]。叶绿素不仅在自然界光合作用中十分重要,同时作为天然色素原料以及天然医用原料,在食品加工、抗氧化、抗炎症、抗癌等医疗保健领域的功能与应用也正在被逐渐关注和重视[3-5]。目前植物和藻类中发现的叶绿素总共存在5种类型,分别是叶绿素a、叶绿素b、叶绿素c (包含c1、c2和c3)、叶绿素d以及叶绿素f [6-8]。叶绿素、血红素(Heme)、西罗血红素以及光敏胆色素均来自于四吡咯代谢通路。叶绿素合成是一个十分复杂的代谢通路,包括5-氨基乙酰丙酸(5-aminolevuinic acid, 5-ALA)的合成、四吡咯共同的代谢部分、叶绿素合成分支以及叶绿素循环四个部分,相关基因及其编码酶均已被鉴定[9-13]。叶绿素合成通路中的代谢酶多达十几种,深入探究这些催化酶的生化活性以及调控机制是一直以来的热点。依据前人的研究,目前认为叶绿素合成过程中存在三个关键调控节点:(1) 5-ALA合成是整个四吡咯代谢通路的限速步骤;(2)叶绿素与血红素分流节点是螯合镁离子开启叶绿素分支的第一步反应;(3)严格依赖光照激活的原叶绿素酸酯氧化酶(light-dependent pchlide oxidoreductase, LPOR)是被子植物叶绿素合成的必需步骤[14]。
近些年,国内有关叶绿素合成代谢酶的研究取得了诸多进展。(1)谷氨酰-tRNA还原酶(Glu-tRNA reductase, GluTR)是催化谷氨酰-tRNA还原成5-ALA的关键步骤,也是叶绿素合成的限速步骤。国内研究组解析了拟南芥GluTR与其结合蛋白GBP (GluTR binding protein)、Flu (fluorescent in blue light)的复合物晶体结构,揭示了GBP以及Flu对GluTR活性的调控作用[15-16]。(2)光依赖型的原叶绿素酸酯氧化还原酶LPOR将黑暗中积累的原叶绿素酸酯(protochlorophyllide, Pchlide)在光照条件下转变为叶绿素酸酯(chlorophyllide, Chlide),是光暗转换过程中十分关键的催化酶。国内外研究组分别解析了蓝藻LPOR酶单体以及LPOR-NADPH蛋白复合体的晶体结构,揭示了POR驱动催化反应的作用机理[17-18]。(3) GUN4 (genome uncoupled 4)蛋白是镁螯合酶(magnesium chelatase, MgCh)调控亚基,通过结合底物原卟啉IX (protoporphyrin IX, Proto IX)与产物镁原卟啉IX (Mg-protoporphyrin IX, Mg-Proto IX)调控MgCh活性,催化叶绿素合成分支的第一步反应。我国科研人员发现,莱茵衣藻CrGUN4可结合Heme分支代谢产物胆色素(bilins),促进MgCh活性及维持MgCh催化亚基CHLH1的稳定性,调控叶绿素合成[19-20]。不同于陆地植物,海洋藻类的光合作用依赖能吸收蓝绿光波段的叶绿素c、岩藻黄素等,但是催化叶绿素c合成的酶并未被解析。最新突破性研究进展是在硅藻中揭示了叶绿素c合成酶编码基因CHLC (Chl c synthase),并解析了CHLC的催化机制 [21]。
2 叶绿素合成调控研究进展 2.1 四吡咯代谢“内调控”(叶绿体内调控)前人在叶绿素代谢酶活性的调控方面取得了诸多进展,尤其关注关键代谢酶GluTR、镁螯合酶MgCh调控亚基GUN4以及POR [14, 22]。近期研究发现,MORF2 (multiple organellar RNA editing factor 2)和MORF9与GUN4互作促进GUN4复合体积累,以不依赖于GUN4的方式调控MgCh活性[23]。同时,拟南芥MORF2和MORF9也被证实具有Holdase活性,在体外有效减缓PORB聚集,维持POR稳定[23]。此外,PCD8 (programmed cell death 8)与四吡咯代谢酶HEMC、CHLD以及PORC互作,也与分子伴侣ClpC1互作,调控叶绿素合成[24]。值得一提的是,德国Bernhard Grimm课题组近些年取得了一系列研究进展,发现:cpSRP43 (chloroplast signal recognition particle 43)和cpSRP54对GluTR、GUN4蛋白质稳定性起到保护作用[25-26];定位于类囊体膜的BCMs (balance of chlorophyll metabolism)与GUN4互作调控镁螯合酶活性促进叶绿素合成,维持叶绿素合成与降解的平衡[27];血红素加氧酶FC2被证实通过与FLU-POR-GluTR复合体中的POR互作抑制GluTR活性[28]。
2.2 叶绿体反馈信号调控(叶绿体与细胞核之间的互作调控)内共生而来的叶绿体,其发育及基因表达均受到细胞核控制,研究人员将细胞核向叶绿体传递的信号称为正向信号(anterograde signaling)。与此同时,叶绿体也会释放信号调控细胞核相关基因表达,该逆行信号被称为反馈信号(retrograde signaling)[29-32]。Chory实验室通过正向遗传筛选克隆到反馈信号因子GUN1~GUN6 (genome uncoupled 1~6),使得叶绿体反馈信号调控植物生长发育的作用机制成为研究热点[33-34]。叶绿体既保留了自身编码蛋白的功能,同时接收细胞核编码蛋白。前人将叶绿体编码光合相关蛋白的基因称为PhAPGs (photosynthesis-associated plastid genes),将细胞核编码光合相关蛋白的基因称为PhANGs (photosynthesis-associated nuclear genes);其中,叶绿素合成相关基因(比如HEMA1/FLU/PPO1/GUN5/PORA/PORB/PORC等)均属于PhANGs基因[35]。越来越多的研究表明,叶绿体反馈信号在叶绿素合成过程中至关重要。在莱茵衣藻中发现,Heme衍生代谢物——胆色素对光依赖性的转绿以及光合作用至关重要[36-38]。此外,Heme作为很多蛋白的结合色素不仅仅分布在叶绿体中,也能够迁移至线粒体、细胞质甚至细胞核中行使功能[14]。尽管在脊椎动物、酵母和蠕虫中已经发现了几种Heme转运因子,但迄今为止在植物中还没有相关报道,因此Heme传递反馈信号的作用机制并不清楚。GUN1整合叶绿体中的多个反馈信号,调控细胞核PhANGs基因表达[39-40]。研究发现,GUN1不仅在叶绿体内部调控叶绿体发育,同时调控叶绿体前体蛋白转运,影响ClpD及叶绿素合成相关蛋白GluTR、GBP等向质体转运[41]。但是,目前对于GUN1蛋白的生物学性质并没有明确定义,因而其介导的反馈信号如何传导也尚未可知。此外,最新研究显示,不同类型的反馈信号交叉调控叶绿体发育,水稻中的四吡咯核心因子OsGUN4/OsGUN5可调控PhAPGs表达,参与叶绿体反馈信号传递[42]。近些年,ROS介导的反馈信号在叶绿体发育与叶绿素合成中的作用逐渐引起关注。叶绿体中产生的ROS具有两面性:一方面,ROS (比如单线态氧(1O2))作为毒性物质,与植物生物大分子反应破坏其功能,尤其是在高光以及胁迫等条件下;另一方面,ROS作为重要的信号分子,调控植物的生长发育,如种子休眠、叶片转绿等过程[43-47]。高光照处理材料转录组数据表明,叶绿体1O2是拟南芥响应高光最主要的ROS种类[48]。同时,国外实验室研究发现,EX1/EX2 (Executer1/Executer2)介导的叶绿体反馈信号调控幼苗早期叶绿素合成[49]。flu突变体和pif1 pif3突变体在黑暗中积累了大量光敏感物质Pchlide,见光后迅速产生大量1O2,此时EX1/EX2介导的1O2信号导致细胞死亡、幼苗黄化甚至白化[50-52]。最新研究发现,“1O2受体” EX1蛋白响应1O2信号由叶绿体转移至细胞核,与转录因子WRKYs相互作用调控幼苗转绿[53]。
2.3 光信号与激素信号的转录调控作用(细胞核内调控)光的能量属性与环境信号属性使其在植物叶绿体发育中发挥着不可或缺的作用。与此同时,光信号与多种激素信号共同调控叶绿素合成,形成了十分复杂的调控网络。光信号与激素信号的调控作用主要体现在转录水平,但随着生物学技术的不断进步,在染色质水平以及其他方面也取得了一些研究进展,比如最新研究发现蓝光受体CRY2介导的mRNA-m6A修饰调控叶绿素稳态[54-55]。光信号转导核心因子PIFs (photochrome interacting factors)与HY5 (elongated hypocotyl 5)、油菜素内酯(brassinolide, BR)信号中的BZR1 (brassinazole-resistant 1)与BES1 (Bri1-EMS-suppressor 1)以及乙烯信号中的EIN3 (ethylene insensitive 3)等转录因子均调控叶绿素合成基因表达,而另一类转录因子GLK1/GLK2 (golden-like 1/2)、GATA以及CGA1/GNL (cytokinin-induced GATA1/GNC-like)则实现了对光信号以及激素信号等多种内外信号的整合,尤其是GLK1/GLK2,对叶绿素合成以及叶绿体发育至关重要[56-58]。
光信号对叶绿素合成的调控体现在对其黑暗下的抑制和光照下的激活。一方面是黑暗条件下,光信号缺失促使光信号负向调控因子PIFs和COP1 (constitutive photomorphogenic 1)等大量积累,抑制叶绿素合成与叶绿体发育。另一方面是光照条件下,PIFs被磷酸化降解,COP1活性被光受体抑制,而光信号正向调控因子HY5、FHY3/FAR1 (far-red elongated hypocotyl 3/far-red-impaired response 1)等大量积累,激活四吡咯代谢基因表达,促进叶绿素合成[59-61]。在黑暗条件下,pifq突变体(缺失PIF1、PIF3、PIF4和PIF5)中大部分四吡咯代谢基因转录水平显著上升,表明PIFs在转录水平调控叶绿素合成中具有重要作用[62-63]。首先,PIFs通过直接或间接的作用方式抑制HEMA1、CHLH和GUN4等基因表达,促进PORA表达[53, 64]。其次,在黑暗条件下,PIFs协同COP1促进HY5降解,进而削弱HY5对TPB基因的转录激活作用[65],且PIFs调控CHLH、CAB等基因的分布位置重置(即由细胞核内部转移至细胞核膜外缘的现象),以及招募染色质重塑因子BRM (Brahma)、去乙酰化酶HDA15/HDA19等在染色质水平调控叶绿素合成[66-69]。此外,在黑暗中,转录因子RVE1 (Reveille1)直接结合PORA启动子促进其表达,同时抑制GSA2、CHLH以及CRD1表达,进而抑制叶绿素合成[70]。在光照条件下,转录因子HY5对叶绿素的合成至关重要,其功能缺失会导致叶绿素含量降低。HY5被证实可直接结合CHLH以及PORC等基因启动子区的G-box结构域从而激活其表达,并通过间接方式促进HEMA1表达,进而促进叶绿素合成[64]。此外,转录因子FHY3/FAR1通过直接结合HEMB1启动子,以及间接调控GUN4和CHLH等基因表达,促进叶绿素合成[71-72]。光信号转导核心因子PIFs与HY5的这种相互作用,拮抗调控四吡咯代谢基因转录水平,使幼苗在黑暗中不会过度积累光敏感物质(比如Pchlide),同时保证了见光后POR酶被迅速激活,进而避免光漂白。
激素信号对叶绿素合成的调控作用主要体现在对叶绿体发育核心转录因子GLK1/GLK2、GATA以及CGA1/GNL等的调控作用以及其与光信号之间的交叉互作。GLK1/GLK2、GNC、GNL/CGA1以及GATA15、GATA16、GATA17和GATA17L等被报道直接调控GUN4、CHLH和CHLM等基因表达,正向调控叶绿素合成,这些转录因子对叶绿体发育以及叶绿素合成的调控作用具有冗余性[56, 61]。黑暗下BR抑制叶绿素合成,一方面是其转录因子BZR1以及BZR2/BES1直接抑制GATA2、GATA4以及GLK1/2转录[73-74];另一方面,BZR1/BES1与PIF4互作,抑制GLK1/GLK2以及叶绿素合成基因表达[75]。此外,黑暗下COP1促进磷酸化形式的BZR1 (非活性形式)降解,促使有活性的非磷酸化BZR1在黑暗中发挥作用[76]。近年国内研究发现,光信号因子HY5与BZR1互作并抑制其功能[77]。与此同时,光下HY5促进BR负向因子BIN2激酶稳定性,削弱BR对叶绿体发育的抑制作用[78]。最新研究表明,光下BIN2通过促进GLK1磷酸化激活叶绿体发育[79],并且BPG4 (Brz-insensitive-pale green 4 (bpg4)) 响应BR和光信号,通过与GLK1互作抑制其转录活性[80]。在黑暗条件下,GA信号负向因子DELLA蛋白,一方面直接促进POR基因表达以及蛋白积累,使植物保持较高的POR酶活性[81];另一方面与PIFs互作并促进其降解,解除其对GNC/GNL的转录抑制[82]。黑暗中乙烯信号转录因子EIN3/EIL1直接结合启动子促进PORA和PORB表达,与PIFs协同抑制叶绿体发育。同时,EIN3蛋白被光信号调控:COP1在黑暗条件下降解EBF1/2 (EIN3-binding F-box 1/2)促进EIN3蛋白稳定,PHYB则在光下促进EBF1/2与EIN3互作促进其降解[83-86]。此外,Auxin信号转导通路中的转录因子ARF (auxin response factor)以及CK信号转导通路中的B-type ARRs (Arabidopsis response regulators)等转录因子直接结合GLK1、CAB等基因启动子,调控这些基因表达,促进叶绿素合成[87-89]。叶绿素合成是光合作用的重要环节,但过多叶绿素的积累对于果实的成熟与着色是十分不利的,因此叶绿素的降解对于叶绿素含量的调控至关重要。我国是园艺大国,近些年随着生物技术的进步,在草莓、香蕉、番茄、荔枝、柑橘等果实成熟过程中叶绿素降解调控方面取得了诸多研究进展,发现了一些重要的转录调控因子,比如CsMADS3、MaMYB60等,为进一步提高果实品质奠定了重要的理论基础[90-94]。
3 开放性问题与展望随着人们对叶绿素合成调控机制的深入探究,很多新的调控机制被逐渐发现。
研究发现,除了四吡咯代谢通路中间产物,叶绿体中的其他代谢通路中间产物,比如3′-磷酸腺苷-5′-磷酸(PAP)以及赤藓糖磷酸酯合成中间产物MEcPP等,也参与介导反馈信号调控植物光信号响应以及环境适应,但是这些代谢物质在细胞核中的作用机制并不清楚[95-98]。在转录后水平,蛋白质组学数据显示叶绿素合成代谢酶GSA-AT、CHLI、CHLH、POR、DVR等均具有潜在的磷酸化位点[99-100]。根据泛素化组学数据,叶绿体内的很多蛋白存在泛素化修饰,RING型E3泛素连接酶SP1、CDC48复合体、PUB4等被证实介导叶绿体或叶绿体内蛋白质泛素化降解[101-104]。叶绿素合成代谢酶进入叶绿体发挥功能依赖于叶绿体的跨膜转运复合体,在莱茵衣藻中发现叶绿体基因组最大基因编码的蛋白Orf2971参与蛋白质转运和质量控制,维持叶绿体稳态[105]。同时,我国两个实验室几乎同步解析了TOC (叶绿体外膜上的转运子)和TIC (叶绿体内膜上的转运子)相连形成的超级复合物,解决了一直以来的争议,为后续解析细胞核编码蛋白转运对叶绿素合成的调控奠定了重要的结构学基础[106-107]。此外,硫氧还蛋白TRX (redox-active thioredoxins)与NTRC (NADPH dependent thioredoxin reductase C)介导的氧化还原反应、一氧化氮介导的S-亚硝基化(S-nitrosylation)修饰、蛋白质赖氨酸和精氨酸的甲基化修饰等均被证实在叶绿体四吡咯合成过程中发挥重要作用,比如水稻OsTRX与OsMORFs互作调控叶绿体RNA编辑效率,进而调控叶绿体发育[14, 108]。GLK1/GLK2转录因子在叶绿体发育中非常重要,我国研究团队将C4植物玉米GLK在C3水稻中表达可调控气孔闭合,提高水稻的光合效率和耐旱性,为利用C4植物基因改造C3植物提升光合效率提供了参考[109-110]。
尽管这些较新的调控机制研究大多为组学数据或特例探究,但是这些调控方式的发现及其重要性不言而喻。叶绿体反馈信号的复杂性、光信号与激素信号之间的互作调控以及叶绿体代谢产物与细胞核转录调控之间的关联性正逐渐被解析和关注,利用当下的AI技术、多组学大数据联合分析、单细胞测序等先进研究手段深入探究这些调控机制和多信号间的互作关系,对于更深层次地理解和应用光合作用具有重要意义。
[1] |
Nam SH, Lee J, An YJ. The potential of Euglena species as a bioindicator for soil ecotoxicity assessment. Comp Biochem Physiol C Toxicol Pharmacol, 2023, 267: 109586. DOI:10.1016/j.cbpc.2023.109586 |
[2] |
Proctor MS, Sutherland GA, Canniffe DP, et al. The terminal enzymes of (bacterio) chlorophyll biosynthesis. R Soc Open Sci, 2022, 9: 211903. DOI:10.1098/rsos.211903 |
[3] |
Solymosi K, Mysliwa-Kurdziel B. Chlorophylls and their derivatives used in food industry and medicine. Mini Rev Med Chem, 2017, 17: 1194-222. |
[4] |
Martins T, Barros AN, Rosa E, et al. Enhancing health benefits through chlorophylls and chlorophyll-rich agro-food: a comprehensive review. Molecules, 2023, 28: 5344. DOI:10.3390/molecules28145344 |
[5] |
Sun D, Wu S, Li X, et al. The structure, functions and potential medicinal effects of chlorophylls derived from microalgae. Mar Drugs, 2024, 22: 65. DOI:10.3390/md22020065 |
[6] |
Chen M, Schliep M, Willows RD, et al. A red-shifted chlorophyll. Science, 2010, 329: 1318-9. DOI:10.1126/science.1191127 |
[7] |
Chen M. Chlorophyll modifications and their spectral extension in oxygenic photosynthesis. Annu Rev Biochem, 2014, 83: 317-40. DOI:10.1146/annurev-biochem-072711-162943 |
[8] |
Nürnberg DJ, Morton J, Santabarbara S, et al. Photochemistry beyond the red limit in chlorophyll f-containing photosystems. Science, 2018, 360: 1210-3. DOI:10.1126/science.aar8313 |
[9] |
Tanaka R, Tanaka A. Tetrapyrrole biosynthesis in higher plants. Annu Rev Plant Biol, 2007, 58: 321-46. DOI:10.1146/annurev.arplant.57.032905.105448 |
[10] |
Bryant DA, Hunter CN, Warren MJ. Biosynthesis of the modified tetrapyrroles-the pigments of life. J Biol Chem, 2020, 295: 6888-925. DOI:10.1074/jbc.REV120.006194 |
[11] |
Robert D, Willows J, Clark Lagarias, et al. Chapter 21-Tetrapyrrole biosynthesis and signaling (chlorophyll, heme, and bilins)[M]//Dutcher SK. The Chlamydomonas sourcebook (Third Edition). Cambridge: Academic Press, 2023: 691-731
|
[12] |
Tanaka R, Kobayashi K, Masuda T. Tetrapyrrole metabolism in Arabidopsis thaliana. Arabidopsis Book, 2011, 9: 145-85. |
[13] |
Brzezowski P, Richter AS, Grimm B. Regulation and function of tetrapyrrole biosynthesis in plants and algae. Biochim Biophys Acta, 2015, 1847: 968-85. DOI:10.1016/j.bbabio.2015.05.007 |
[14] |
Wang P, Ji S, Grimm B. Post-translational regulation of metabolic checkpoints in plant tetrapyrrole biosynthesis. J Exp Bot, 2022, 73: 4624-36. DOI:10.1093/jxb/erac203 |
[15] |
Zhao A, Fang Y, Chen X, et al. Crystal structure of Arabidopsis glutamyl-tRNA reductase in complex with its stimulator protein. Proc Natl Acad Sci U S A, 2014, 111: 6630-5. DOI:10.1073/pnas.1400166111 |
[16] |
Fang Y, Zhao S, Zhang F, et al. The Arabidopsis glutamyl-tRNA reductase (GluTR) forms a ternary complex with FLU and GluTR-binding protein. Sci Rep, 2016, 6: 19756. DOI:10.1038/srep19756 |
[17] |
Zhang S, Heyes DJ, Feng L, et al. Structural basis for enzymatic photocatalysis in chlorophyll biosynthesis. Nature, 2019, 574: 722-5. DOI:10.1038/s41586-019-1685-2 |
[18] |
Dong CS, Zhang WL, Wang Q, et al. Crystal structures of cyanobacterial light-dependent protochlorophyllide oxidoreductase. Proc Natl Acad Sci U S A, 2020, 117: 8455-61. DOI:10.1073/pnas.1920244117 |
[19] |
Zhang W, Willows RD, Deng R, et al. Bilin-dependent regulation of chlorophyll biosynthesis by GUN4. Proc Natl Acad Sci U S A, 2021, 118: e2104443118. DOI:10.1073/pnas.2104443118 |
[20] |
Hu JH, Chang JW, Xu T, et al. Structural basis of bilin binding by the chlorophyll biosynthesis regulator GUN4. Protein Sci, 2021, 30: 2083-91. DOI:10.1002/pro.4164 |
[21] |
Jiang Y, Cao T, Yang Y, et al. A chlorophyll c synthase widely co-opted by phytoplankton. Science, 2023, 382: 92-8. DOI:10.1126/science.adg7921 |
[22] |
Richter AS, Banse C, Grimm B. The GluTR-binding protein is the heme-binding factor for feedback control of glutamyl-tRNA reductase. Elife, 2019, 8: e46300. DOI:10.7554/eLife.46300 |
[23] |
Yuan J, Ma T, Ji S, et al. Two chloroplast-localized MORF proteins act as chaperones to maintain tetrapyrrole biosynthesis. New Phytol, 2022, 235: 1868-83. DOI:10.1111/nph.18273 |
[24] |
Geng R, Pang X, Li X, et al. PROGRAMMED CELL DEATH8 interacts with tetrapyrrole biosynthesis enzymes and ClpC1 to maintain homeostasis of tetrapyrrole metabolites in Arabidopsis. New Phytol, 2023, 238: 2545-60. DOI:10.1111/nph.18906 |
[25] |
Ji S, Siegel A, Shan SO, et al. Chloroplast SRP43 autonomously protects chlorophyll biosynthesis proteins against heat shock. Nat Plants, 2021, 7: 1420-32. DOI:10.1038/s41477-021-00994-y |
[26] |
Ji S, Grimm B, Wang P. Chloroplast SRP43 and SRP54 independently promote thermostability and membrane binding of light-dependent protochlorophyllide oxidoreductases. Plant J, 2023, 115: 1583-98. DOI:10.1111/tpj.16339 |
[27] |
Wang P, Richter AS, Kleeberg JRW, et al. Post-translational coordination of chlorophyll biosynthesis and breakdown by BCMs maintains chlorophyll homeostasis during leaf development. Nat Commun, 2020, 11: 1254. DOI:10.1038/s41467-020-14992-9 |
[28] |
Fan T, Roling L, Hedtke B, et al. FC2 stabilizes POR and suppresses ALA formation in the tetrapyrrole biosynthesis pathway. New Phytol, 2023, 239: 624-38. DOI:10.1111/nph.18952 |
[29] |
Chi W, Sun X, Zhang L. Intracellular signaling from plastid to nucleus. Ann Rev Plant Biol, 2013, 64: 559-82. DOI:10.1146/annurev-arplant-050312-120147 |
[30] |
Chan KX, Phua SY, Crisp P, et al. Learning the languages of the chloroplast: retrograde signaling and beyond. Annu Rev Plant Biol, 2016, 67: 25-53. DOI:10.1146/annurev-arplant-043015-111854 |
[31] |
Jan M, Liu Z, Rochaix JD, et al. Retrograde and anterograde signaling in the crosstalk between chloroplast and nucleus. Front Plant Sci, 2022, 13: 980237. DOI:10.3389/fpls.2022.980237 |
[32] |
Richter AS, Nägele T, Grimm B, et al. Retrograde signaling in plants: a critical review focusing on the GUN pathway and beyond. Plant Commun, 2023, 4: 100511. DOI:10.1016/j.xplc.2022.100511 |
[33] |
Susek RE, Ausubel FM, Chory J. Signal-transduction mutants of Arabidopsis uncouple nuclear CAB and RBCS gene expression from chloroplast development. Cell, 1993, 74: 787-99. DOI:10.1016/0092-8674(93)90459-4 |
[34] |
Woodson JD, Chory J. Coordination of gene expression between organellar and nuclear genomes. Nat Rev Genetics, 2008, 9: 383-95. DOI:10.1038/nrg2348 |
[35] |
Hwang Y, Han S, Yoo CY, et al. Anterograde signaling controls plastid transcription via sigma factors separately from nuclear photosynthesis genes. Nat Commun, 2022, 13: 7440. DOI:10.1038/s41467-022-35080-0 |
[36] |
Duanmu D, Casero D, Dent RM, et al. Retrograde bilin signaling enables Chlamydomonas greening and phototrophic survival. Proc Natl Acad Sci U S A, 2013, 110: 3621-6. DOI:10.1073/pnas.1222375110 |
[37] |
Wittkopp TM, Schmollinger S, Saroussi S, et al. Bilin-dependent photoacclimation in Chlamydomonas reinhardtii. Plant Cell, 2017, 29: 2711-26. DOI:10.1105/tpc.17.00149 |
[38] |
Zhang W, Deng R, Shi W, et al. Heme oxygenase-independent bilin biosynthesis revealed by a hmox1 suppressor screening in Chlamydomonas reinhardtii. Front Microbiol, 2022, 13: 956554. DOI:10.3389/fmicb.2022.956554 |
[39] |
Wu GZ, Chalvin C, Hoelscher M, et al. Control of retrograde signaling by rapid turnover of GENOMES UNCOUPLED1. Plant Physiol, 2018, 176: 2472-95. DOI:10.1104/pp.18.00009 |
[40] |
Jan M, Liu Z, Rochaix JD, et al. Retrograde and anterograde signaling in the crosstalk between chloroplast and nucleus. Front Plant Sci, 2022, 13: 980237. DOI:10.3389/fpls.2022.980237 |
[41] |
Wu GZ, Meyer EH, Richter AS, et al. Control of retrograde signalling by protein import and cytosolic folding stress. Nat Plants, 2019, 5: 525-38. DOI:10.1038/s41477-019-0415-y |
[42] |
Wang Y, Wang Y, Zhu X, et al. Tetrapyrrole biosynthesis pathway regulates plastid-to-nucleus signaling by controlling plastid gene expression in plants. Plant Commun, 2023, 4: 100411. DOI:10.1016/j.xplc.2022.100411 |
[43] |
Fischer BB, Hideg E, Krieger-Liszkay A. Production, detection, and signaling of singlet oxygen in photosynthetic organisms. Antioxid Redox Signal, 2013, 18: 2145-62. DOI:10.1089/ars.2012.5124 |
[44] |
Gracanin M, Hawkins CL, Pattison DI, et al. Singlet-oxygen-mediated amino acid and protein oxidation: formation of tryptophan peroxides and decomposition products. Free Radic Biol Med, 2009, 47: 92-102. DOI:10.1016/j.freeradbiomed.2009.04.015 |
[45] |
Mittler R. ROS are good. Trends Plant Sci, 2017, 22: 11-9. DOI:10.1016/j.tplants.2016.08.002 |
[46] |
Kim C, Lee KP, Baruah A, et al. 1O2-mediated retrograde signaling during late embryogenesis predetermines plastid differentiation in seedlings by recruiting abscisic acid. Proc Natl Acad Sci U S A, 2009, 106: 9920-4. DOI:10.1073/pnas.0901315106 |
[47] |
Dogra V, Rochaix JD, Kim C. Singlet oxygen-triggered chloroplast-to-nucleus retrograde signalling pathways: an emerging perspective. Plant Cell Environ, 2018, 41: 1727-38. DOI:10.1111/pce.13332 |
[48] |
Gutiérrez J, González-Pérez S, García-García F, et al. Does singlet oxygen activate cell death in Arabidopsis cell suspension cultures? Analysis of the early transcriptional defense responses to high light stress. Plant Signal Behav, 2011, 6: 1937-42. DOI:10.4161/psb.6.12.18264 |
[49] |
Page MT, McCormac AC, Smith AG, et al. Singlet oxygen initiates a plastid signal controlling photosynthetic gene expression. New Phytol, 2017, 213: 1168-80. DOI:10.1111/nph.14223 |
[50] |
Chen D, Xu G, Tang W, et al. Antagonistic basic helix-loop-helix/bZIP transcription factors form transcriptional modules that integrate light and reactive oxygen species signaling in Arabidopsis. Plant Cell, 2013, 25: 1657-73. DOI:10.1105/tpc.112.104869 |
[51] |
Li M, Kim C. Chloroplast ROS and stress signaling. Plant Commun, 2021, 3: 100264. |
[52] |
Li Z, Mo W, Jia L, et al. Rice FLUORESCENT1 is involved in the regulation of chlorophyll. Plant Cell Physiol, 2019, 60: 2307-18. DOI:10.1093/pcp/pcz129 |
[53] |
Li Y, Liu H, Ma T, et al. Arabidopsis EXECUTER1 interacts with WRKY transcription factors to mediate plastid-to-nucleus singlet oxygen signaling. Plant Cell, 2023, 35: 827-51. DOI:10.1093/plcell/koac330 |
[54] |
Jing Y, Lin R. Transcriptional regulatory network of the light signaling pathways. New Phytol, 2020, 227: 683-97. DOI:10.1111/nph.16602 |
[55] |
Jiang B, Zhong Z, Gu L, et al. Light-induced LLPS of the CRY2/SPA1/FIO1 complex regulating mRNA methylation and chlorophyll homeostasis in Arabidopsis. Nat Plants, 2024, 10: 192. |
[56] |
Kobayashi K, Masuda T. Transcriptional regulation of tetrapyrrole biosynthesis in Arabidopsis thaliana. Front Plant Sci, 2016, 7: 1811. |
[57] |
Cackett L, Luginbuehl LH, Schreier TB, et al. Chloroplast development in green plant tissues: the interplay between light, hormone, and transcriptional regulation. New Phytol, 2022, 233: 2000-16. DOI:10.1111/nph.17839 |
[58] |
Tu X, Ren S, Shen W, et al. Limited conservation in cross-species comparison of GLK transcription factor binding suggested wide-spread cistrome divergence. Nat Commun, 2022, 13: 7632. DOI:10.1038/s41467-022-35438-4 |
[59] |
Lau OS, Deng XW. The photomorphogenic repressors COP1 and DET1: 20 years later. Trends Plant Sci, 2012, 17: 584-93. DOI:10.1016/j.tplants.2012.05.004 |
[60] |
Burko Y, Seluzicki A, Zander M, et al. Chimeric activators and repressors define HY5 activity and reveal a light-regulated feedback mechanism. Plant Cell, 2020, 32: 967-83. DOI:10.1105/tpc.19.00772 |
[61] |
Zhang T, Zhang R, Zeng XY, et al. GLK transcription factors accompany ELONGATED HYPOCOTYL5 to orchestrate light-induced seedling development in Arabidopsis. Plant Physiol, 2024, 5: kiae002. |
[62] |
Huq E, Al-Sady B, Hudson M, et al. Phytochrome-interacting factor 1 is a critical bHLH regulator of chlorophyll biosynthesis. Science, 2004, 305: 1937-41. DOI:10.1126/science.1099728 |
[63] |
Shin J, Kim K, Kang H, et al. Phytochromes promote seedling light responses by inhibiting four negatively acting phytochrome-interacting factors. Proc Natl Acad Sci U S A, 2009, 106: 7660-5. DOI:10.1073/pnas.0812219106 |
[64] |
Toledo-Ortiz G, Johansson H, Lee KP, et al. The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription. PLoS Genet, 2014, 10: e1004416. DOI:10.1371/journal.pgen.1004416 |
[65] |
Zhu L, Bu Q, Xu X, et al. CUL4 forms an E3 ligase with COP1 and SPA to promote light-induced degradation of PIF1. Nat Commun, 2015, 6: 8245. DOI:10.1038/ncomms9245 |
[66] |
Liu X, Chen CY, Wang KC, et al. PHYTOCHROME INTERACTING FACTOR3 associates with the histone deacetylase HDA15 in repression of chlorophyll biosynthesis and photosynthesis in etiolated Arabidopsis seedlings. Plant Cell, 2013, 25: 1258-73. DOI:10.1105/tpc.113.109710 |
[67] |
Feng CM, Qiu Y, Van Buskirk EK, et al. Light regulated gene repositioning in Arabidopsis. Nat Commun, 2014, 5: 3027. DOI:10.1038/ncomms4027 |
[68] |
Zhang D, Li YH, Zhang XY, et al. The SWI2/SNF2 chromatin-remodeling ATPase BRAHMA regulates chlorophyll biosynthesis in Arabidopsis. Mol Plant, 2017, 10: 155-67. DOI:10.1016/j.molp.2016.11.003 |
[69] |
Guo Q, Jing Y, Gao Y, et al. The PIF1/PIF3-MED25-HDA19 transcriptional repression complex regulates phytochrome signaling in Arabidopsis. New Phytol, 2023, 240: 1097-115. DOI:10.1111/nph.19205 |
[70] |
Xu G, Guo H, Zhang D, et al. REVEILLE1 promotes NADPH: protochlorophyllide oxidoreductase A expression and seedling greening in Arabidopsis. Photosynth Res, 2015, 126: 331-40. DOI:10.1007/s11120-015-0146-5 |
[71] |
Tang W, Wang W, Chen D, et al. Transposase-derived proteins FHY3/FAR1 interact with PHYTOCHROME-INTERACTING FACTOR1 to regulate chlorophyll biosynthesis by modulating HEMB1 during deetiolation in Arabidopsis. Plant Cell, 2012, 24: 1984-2000. DOI:10.1105/tpc.112.097022 |
[72] |
Wang H, Wang H. Multifaceted roles of FHY3 and FAR1 in light signaling and beyond. Trends Plant Sci, 2015, 20: 453-61. DOI:10.1016/j.tplants.2015.04.003 |
[73] |
Luo XM, Lin WH, Zhu S, et al. Integration of light- and brassinosteroid-signalling pathways by a GATA transcription factor in Arabidopsis. Dev Cell, 2010, 19: 872-83. DOI:10.1016/j.devcel.2010.10.023 |
[74] |
Yu X, Li L, Zola J, et al. A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana. Plant J, 2011, 65: 634-46. DOI:10.1111/j.1365-313X.2010.04449.x |
[75] |
Oh E, Zhu JY, Wang ZY. Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses. Nat Cell Biol, 2012, 14: 802-9. DOI:10.1038/ncb2545 |
[76] |
Kim B, Jeong YJ, Corvalán C, et al. Darkness and gulliver2/phyB mutation decrease the abundance of phosphorylated BZR1 to activate brassinosteroid signaling in Arabidopsis. Plant J, 2014, 77: 737-47. DOI:10.1111/tpj.12423 |
[77] |
Li QF, He JX. BZR1 interacts with HY5 to mediate brassinosteroid- and light-regulated cotyledon opening in Arabidopsis in darkness. Mol Plant, 2016, 9: 113-25. DOI:10.1016/j.molp.2015.08.014 |
[78] |
Li J, Terzaghi W, Gong Y, et al. Modulation of BIN2 kinase activity by HY5 controls hypocotyl elongation in the light. Nat Commun, 2020, 11: 1592. DOI:10.1038/s41467-020-15394-7 |
[79] |
Zhang D, Tan W, Yang F, et al. A BIN2-GLK1 signaling module integrates brassinosteroid and light signaling to repress chloroplast development in the dark. Dev Cell, 2021, 56: 310-24. DOI:10.1016/j.devcel.2020.12.001 |
[80] |
Tachibana R, Abe S, Marugami M, et al. BPG4 regulates chloroplast development and homeostasis by suppressing GLK transcription factors and involving light and brassinosteroid signaling. Nat Commun, 2024, 15: 370. |
[81] |
Cheminant S, Wild M, Bouvier F, et al. DELLAs regulate chlorophyll and carotenoid biosynthesis to prevent photooxidative damage during seedling deetiolation in Arabidopsis. Plant Cell, 2011, 23: 1849-60. DOI:10.1105/tpc.111.085233 |
[82] |
Li K, Yu R, Fan LM, et al. DELLA-mediated PIF degradation contributes to coordination of light and gibberellin signalling in Arabidopsis. Nat Commun, 2016, 7: 11868. DOI:10.1038/ncomms11868 |
[83] |
Zhong S, Zhao M, Shi T, et al. EIN3/EIL1 cooperate with PIF1 to prevent photo-oxidation and to promote greening of Arabidopsis seedlings. Proc Natl Acad Sci U S A, 2009, 106: 21431-6. DOI:10.1073/pnas.0907670106 |
[84] |
Zhong S, Shi H, Xue C, et al. Ethylene-orchestrated circuitry coordinates a seedling's response to soil cover and etiolated growth. Proc Natl Acad Sci U S A, 2014, 111: 3913-20. DOI:10.1073/pnas.1402491111 |
[85] |
Shi H, Liu R, Xue C, et al. Seedlings transduce the depth and mechanical pressure of covering soil using COP1 and ethylene to regulate EBF1/EBF2 for soil emergence. Curr Biol, 2016, 26: 139-49. DOI:10.1016/j.cub.2015.11.053 |
[86] |
Shi H, Shen X, Liu R, et al. The red light receptor phytochrome B directly enhances substrate-E3 ligase interactions to attenuate ethylene responses. Dev Cell, 2016, 39: 597-610. DOI:10.1016/j.devcel.2016.10.020 |
[87] |
Cortleven A, Marg I, Yamburenko MV, et al. Cytokinin regulates the etioplast-chloroplast transition through the two-component signaling system and activation of chloroplast-related genes. Plant Physiol, 2016, 172: 464-78. DOI:10.1104/pp.16.00640 |
[88] |
Yuan Y, Xu X, Gong Z, et al. Auxin response factor 6A regulates photosynthesis, sugar accumulation, and fruit development in tomato. Hortic Res, 2019, 6: 85. DOI:10.1038/s41438-019-0167-x |
[89] |
Liu L, Lin N, Liu X, et al. From chloroplast biogenesis to chlorophyll accumulation: the interplay of light and hormones on gene expression in Camellia sinensis cv. Shuchazao leaves. Front Plant Sci, 2020, 11: 256. DOI:10.3389/fpls.2020.00256 |
[90] |
Zhu K, Zheng X, Ye J, et al. Regulation of carotenoid and chlorophyll pools in hesperidia, anatomically unique fruits found only in Citrus. Plant Physiol, 2021, 187: 829-45. DOI:10.1093/plphys/kiab291 |
[91] |
Zou SC, Zhuo MG, Abbas F, et al. Transcription factor LcNAC002 coregulates chlorophyll degradation and anthocyanin biosynthesis in litchi. Plant Physiol, 2023, 192: 1913-27. DOI:10.1093/plphys/kiad118 |
[92] |
Wei W, Yang YY, Lakshmanan P, et al. Proteasomal degradation of MaMYB60 mediated by the E3 ligase MaBAH1 causes high temperature-induced repression of chlorophyll catabolism and green ripening in banana. Plant Cell, 2023, 35: 1408-28. DOI:10.1093/plcell/koad030 |
[93] |
Luo Q, Wei W, Yang YY, et al. E3 ligase MaNIP1 degradation of NON-YELLOW COLORING1 at high temperature inhibits banana degreening. Plant Physiol, 2023, 192: 1969-81. DOI:10.1093/plphys/kiad096 |
[94] |
Zhu K, Chen H, Mei X, et al. Transcription factor CsMADS3 coordinately regulates chlorophyll and carotenoid pools in Citrus hesperidium. Plant Physiol, 2023, 193: 519-36. DOI:10.1093/plphys/kiad300 |
[95] |
Ramel F, Birtic S, Ginies C, et al. Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants. Proc Natl Acad Sci U S A, 2012, 109: 5535-40. DOI:10.1073/pnas.1115982109 |
[96] |
Xiao Y, Savchenko T, Baidoo EE, et al. Retrograde signaling by the plastidial metabolite MEcPP regulates expression of nuclear stress-response genes. Cell, 2012, 149: 1525-35. DOI:10.1016/j.cell.2012.04.038 |
[97] |
Zhu JK. Abiotic stress signaling and responses in plants. Cell, 2016, 167: 313-24. DOI:10.1016/j.cell.2016.08.029 |
[98] |
Jiang J, Xiao Y, Chen H, et al. Retrograde induction of phyB orchestrates ethylene-auxin hierarchy to regulate growth. Plant Physiol, 2020, 183: 1268-80. DOI:10.1104/pp.20.00090 |
[99] |
Brzezowski P, Richter AS, Grimm B. Regulation and function of tetrapyrrole biosynthesis in plants and algae. Biochim Biophys Acta, 2015, 1847: 968-85. DOI:10.1016/j.bbabio.2015.05.007 |
[100] |
Herbst J, Hey D, Grimm B. Posttranslational control of tetrapyrrole biosynthesis: interacting proteins, chaperones, auxiliary factors. Adv Bot Res, 2019, 91: 163-94. |
[101] |
Woodson JD, Joens MS, Sinson AB, et al. Ubiquitin facilitates a quality-control pathway that removes damaged chloroplasts. Science, 2015, 350: 450-4. DOI:10.1126/science.aac7444 |
[102] |
Ling Q, Broad W, Trösch R, et al. Ubiquitin-dependent chloroplast-associated protein degradation in plants. Science, 2019, 363: eaav4467. DOI:10.1126/science.aav4467 |
[103] |
Li J, Yuan J, Li Y, et al. The CDC48 complex mediates ubiquitin-dependent degradation of intra-chloroplast proteins in plants. Cell Rep, 2022, 39: 110664. DOI:10.1016/j.celrep.2022.110664 |
[104] |
Sun Y, Li J, Zhang L, et al. Regulation of chloroplast protein degradation. J Genet Genomics, 2023, 50: 375-84. DOI:10.1016/j.jgg.2023.02.010 |
[105] |
Xing J, Pan J, Yi H, et al. The plastid-encoded protein Orf2971 is required for protein translocation and chloroplast quality control. Plant Cell, 2022, 34: 3383-99. DOI:10.1093/plcell/koac180 |
[106] |
Jin Z, Wan L, Zhang Y, et al. Structure of a TOC-TIC supercomplex spanning two chloroplast envelope membranes. Cell, 2022, 185: 4788-800. DOI:10.1016/j.cell.2022.10.030 |
[107] |
Liu H, Li A, Rochaix JD, et al. Architecture of chloroplast TOC-TIC translocon supercomplex. Nature, 2023, 615: 349-57. DOI:10.1038/s41586-023-05744-y |
[108] |
Wang Y, Wang Y, Ren Y, et al. White panicle2 encoding thioredoxin z, regulates plastid RNA editing by interacting with multiple organellar RNA editing factors in rice. New Phytol, 2021, 229: 2693-706. DOI:10.1111/nph.17047 |
[109] |
Li X, Wang P, Li J, et al. Maize GOLDEN2-LIKE genes enhance biomass and grain yields in rice by improving photosynthesis and reducing photoinhibition. Commun Biol, 2020, 3: 151. DOI:10.1038/s42003-020-0887-3 |
[110] |
Li X, Li J, Wei S, et al. Maize GOLDEN2-LIKE proteins enhance drought tolerance in rice by promoting stomatal closure. Plant Physiol, 2024, 194: 774-86. DOI:10.1093/plphys/kiad561 |