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Research progress on the role of sEV in the pathogenesis of MAFLD

JIANG Peng, LIU Han, FU Xiao-Shan, ZHANG Shu-Qin, LIU Xue-Chao, DING Ling-Ling*
(Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang 212013, China)

Abstract: Metabolic-associated fatty liver disease (MAFLD) affects over one-third of the global population, with
5%-10% of patients progressing to advanced liver diseases, including non-alcoholic steatohepatitis or metabolic-
associated steatohepatitis, cirrhosis, and hepatocellular carcinoma. Currently, in clinical practice there lacks both
non-invasive diagnostic biomarkers and effective pharmacotherapies specifically targeting MAFLD. Therefore,
elucidating its etiopathogenesis is critical for developing targeted therapeutics and diagnostic modalities. Small
extracellular vesicle (sEV) plays multifaceted roles in the pathophysiology of MAFLD onset and progression.
However, consensus regarding their pathomechanisms in MAFLD remains elusive in the field. This review
systematically consolidates current evidence to delineate the central role of SEV in MAFLD pathogenesis through
three interconnected pathways: lipid homeostasis, hepatic inflammation, and fibrogenesis.
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% ®l %F NAFLD 5RXELE UM%, Bld
B 44 AR W AH ¢ B 5 14 BF 99 (MAFLD), 1fif NASH
W5 42 9 AR AH SGRE T PR %8 (metabolic dysfunction-
associated steatohepatitis, MASH)". 5 L &1 £ Ff
SR FRAE PR fE 2 5 MAFLD [k 4, (B A8 28 1 it
J&& 5 MASH [ HLHI 1 R 56 4 B B, 45 I IR 1297 4
RERFkAE . PRI, [ B 8 78 A B o e R
C Sy 2REE,

MAFLD ()4 EBR B 2220 30%, 5 WL 12
PERFI Mo Bb b, 1E AR 25 & AE 1 B IE R B
MAFLD i& 5 1B K8 PR i i i 5
JiR B RIS 22 AR DA 2 BT, (B3
TR E, MAFLD BRI E A, HEZ R R
IREN, PR MR BAREIER L A 2R e S 41 4
WA ™o Horbr, B FRHEPUAN AR A 51 A 1 4
JEFUAR B 2R AR, A EE R P& ST N BT
W, et MAFLD B3R . i Bk 200 -4 A
FETRCAE R+ /N1 B #F FE Y (small extracellular
vesicle, sEV) 2515, W0 BT 5006 401 Bl 25 0 72 41 i
fRE AT 20 P BB Rt R, T B 4T 12
J2 filh )< MAFLD [1] MASH #% 74 (1) ¢ 3K ) K 3%
JH 5 W 240 6 0 R 25 A 4 Y S 308 70 1 400 oL KT -
AL R TR0 I BRI i, SO & AR 4 i b
HFEA, REHALEML. AT, S 5B,
RIEFNEFGEA TR 1) 4 1 WL A 530 B 1 R 8 4
FE . DRI, VR TE L ROWAILE], X TS IE Rl
TR E A ROE YT SRS U N B,

HEKER 2 (IEHE 2B, sEV 7E MAFLD R #
KHEE R U, SEV BIF AT 2 — A DU R R I AT,
sEV H ZMIife, Hlinz5a%Rig. MKE®.
SRR, R AR IR R E . IR
B AR A EEE MY, SR, SEV
fE MAFLD #f e (/E MR S8 4 0. DRIk, AR
ZEIR BIE R A sEV /£ MAFLD & 97 AL il H 11
EH.

1 /NERSNER: S5

SEV /& B 1% £ 30~160 nm [ 41 fg 41 %€ i ",
JUF- BT A W AL 4 M35 vl 43 b, 055 AT ik
JZ 4 (human umbilical vein endothelial cell, HUVEC).
8] 78 5% T~ 41 ffd. (mesenchymal stem cell, MSC). T 4
Ji (T cell)~ B 4 (B cell). EMEZII (macrophage)-
B 98 IR 41 B (dendritic cell, DC) % [ 4R 4% 15 41 iy
(natural killer cell, NK cell) £& "7, H ¥ pf 3 23

o NARIEAE, PRI U N e R 4 B P 2 iR
(multivesicular body, MVB) [{IFE & " #IV A BER,
Joi M5 40 P 3R T 2 3 A A R s 4 R 1 3L R oM
REN, PAERIM RN, AL, mREAE RN
JiR W 2 5 5L 2 i AR TR S N BEIAN TR, B
2 R R B 3 23 3 N R O 2B il MVBE 2, B8 Tk
JRE A By, MVB JE I AR TE 1) A EZF TR
N FE (BIAROK I SEV). 24 MVB 55 41 it 5 i
Gla, BRI RN, B a0
30~150 nm [1J sEV 100~1000 nm FJFAZEV (microvesicle,
MV) & 1~5 um fET/MA (apoptotic body, AB)*',
Ak, EBEATTE MVB e, SRR

SEV AR EIRIE IR B 3690, HA S
EAR B, R WRE . R AR5
AVEES T P [EAERR R, BME B 4
Gy, sSEV LERSE g8 ik by B =tk P
SEV AU 7 A M R 8 B 1, et I AR 2
oK B A 40 B R UR sEV Hb (1) 81 22 B B 2
(sphingosine kinase 2, SPHK2)™, it & 5 5 2 (1
FE AT (Anxf P AR 2 G E 2K CD63. CDY.
CD81 Jz CD82 % sEV fri#) ), IXULiR (I7E41 i
B ) 5 A B R R HE SRR . BREE (A 4
SEV 55 4 MR B4y - Validi 25 P 2007 4E 8 Ik
il FLHE A5 AL BE A% IR (messenger RNA, mRNA) 5
M/ IMZ IR (microRNA, miRNA) ; J& 40 Tt —25
R A, B 2 kL AR B 4A A% BB A% R (mitochondrial
DNA, mtDNA). XU i E A% BEAZ IR (double-stranded
DNA, dsDNA). 8% i S % BE A% IR (single-stranded
DNA, ssDNA). /N #E#% & (small nuclear RNA,
snRNA). /NG BE R (small cytoplasmic RNA,
scRNA) f& % Fi A % 159 #% B #% B2 (non-coding RNA,
ncRNA)™, eAh, sEV AT AR T3 57
5ixlg, HIGRAH > (W le . IH SR, SRS
KRR IE 22 A% ) FIRE EE, S E5EINERE»
W, WAFThEeEE B0, Wik, sEV MR 45
SRR E T HZ RS D6 .

2 sEVAEMAFLD % fw#l I E{ER

MAFLD [ $ 8 J5 23 AR AiF A0 455 g Jo A 2% L
JFFWIE 98 5 B £ Ak o R R LT Bir A 28 84 1 40 i 4TS
Ae/r b SEV, IXEe sEV TR FIThRE LA R BLH &
FERI R B2, #0 sEV BB AN, il
SORGAT SRR e o i o O I T 5 Rt =3 1
TR B B AL R TR R R B SR Y, A
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FAFN, SEV BREIR L HAE AN B H T 2 2
PR 2R BOREMT o a0, R e RO A v I [ R
BT/ RKA MASH, 805 40 A A 1 LIS 75 oK
M la (inositol-requiring enzyme 1 alpha, IRE1A), ¥
% I IRE1A i it X- #E 45 & & F 1 (X-box binding
protein 1, XBP1) i @ £2 % J A5 A It 4% 7% g 5% (8] 4%
T, BN A A R SEV R TR,
75— W I o, o s AR T S A S
(death receptor 5, DR5) {5 51l %75 5 40/ sEV [
FETR, AT OS B WA AR S RE R B, AT
FIRTT SEV FFF AR BRI 2R AL SO0 B K 4T 4k
A TR
2.1 sEVZERTBRAE B4 X EL P RIIER

JFF I Fi SR AR 25 L5 MAFLD [ 7™ B 2 % 1)
M5, W REARE. B SRR TR JOE B
SEZ R BT B (HARER ML, SEV AR
fi 7, I 2 A I 2 A R R TR D T
feihit AL s ARHE B . ZTHFFIES, sEV Z 57
B s Heia KPERRAEARIEA T . AR AL O A 3
B, R EE AR =R, HEnRS
IEL 1 2 ) 2R RO R AR BRI RE R L. AT AR

- miR-122

05 1R A 25 L T S O 40 B B 1 B A E S AR BV
40 B o5 e 40 80% A2 A7, At /& MASH
RANR I E MR g A F
W ME[E R ek H . BEAR. BHAR AR
AT REE MASH J B AR 22 (g 55— 45 B9,
2.1.1  SEVRIEFImiRNATE AR B AR 280
EH

sEV #547 MB L)l (1 RNA, 335 mRNA.
miRNA. snRNA. ncRNA. scRNA, UL DNA, 10
dsDNA. ssDNA Al mtDNA) 7£ MAFLD [ &g
ez wrge B, Hodh, sEV miRNA [ 76 fig 5 A it
bRy e 4 U FH T EL SEV DNA B 32 56E . AR 35 5 45
18 sSEV miRNA Xf AR % (B 1),

miRNA & 5 AU 3 i K2 O ER .
U U 5 L [ s A A2 OX Bh MASH i3 2 (1) g IR R
2 — ", MAFLD & ¥ 17 75 FFIH [ B P75
T fe L 2 P R T 2 2 /N BR R AR N R AR 574
(1) MASH 3t W, Rk, AgplR#E EIHE T HH[E
FE AR LA ltn, miR-122 VB A WE =5 ¥ & e
) miRNA, 25 5 [ 52 A g 5 A % %, miR-
122 E R A 3] 2 A2 5 8 5 I S A R0 IR 1

miR-33
miR-128-1

« | miR-144

" miR-148-a
miR-34a

Acetyl-CoA carboxylase
“4& G6PD, FASN
GPI-anchored protein

Hepat:
= 2 Inhibiting Pl A
cholesterol = '
Activated HSC absorbtion_4 A
s
Adipocytes
Macrophage

Y

SEV miRNA (4miR-122. miR-33. miR-128-1. miR-144. miR-148a. miR-34a, miR-155HImiR-27)7E 45 FFE g o 1t o 2 4%
HEAEH. A, FFAMRKIESEV miRNA (WimiR-1297) 7/ fE T FF 2R i 5 Evra e, MMiHESIMAFLDIEfE . R4 i
SKVEISEVAETT Z R AE VNG, k25 w4 B 9 g T B A

E1 sEV miRNAXSRFBEAS B X4 AV U842 (Bl /5 BB BioRenderz )
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B o0 B8 AR DR, i YRR R IR e AL G
(3-hydroxy-3-methylglutaryl-coenzyme A reductase,
HMGCR) &5, i #E 15 105 B & B 400 i) I s 1R 4
A, TR IS i 2t L I e ke, K R0 R AT 24 L P
JREB M, ATP 854 G418 (1 Al (ATP binding
cassette transporter A1, ABCA1) J& 4i g i & ik & 5
I B ) A2 D e s B, 2 i P I T K v
MR L ABCAL B AR R FE N, JHEds
FHHE R SEERAEIEES A iz, AT
A 1P i % % R 25 1 (high-density lipoprotein, HDL),
T I G P4 P9 I B AR BR miR-122 4k, miR-
33. miR-128-1. miR-144. miR34a I miR-148a %5
AT L ] ABCAT 21 K i) 55 IH [ B 1) 2 2
H A Bz, MIH HDL BJE R, B —
P4 B i o B AR

1% Bz =3 D] - 2o S A ) il AR 18 BEL ) 0T S ARy
(peroxisome proliferator-activated receptor gamma,
PPAR-y) i 2 i I i B4 B ik A7 S AR, sEV o
&R miRNA (41 miR-155 A1 miR-27) il 45 & 40
F K] 3" 4E 1% X (3" untranslated region, 3'UTR) ]I ]
PPAR-y ik, 3 1T #5h] G Jiy 2 A L ] e g 2% 21,
BeAL, e 7 I I 2 A 1R B A 22 miR-1297 A
i I S PTEN/PISK/AKT {5 5 1 i (i i3k AT 22 R 4
My Ak A5, i MAFLD 8k B, 28 LArid,
SEV K I (] miRNA 7 MAFLD JiFIiF g 53 48 1 3% L.
R B R IEAE A
2.1.2  SEVRIGE I AED G 73 18 I i A 4 35
AL IR

% miRNA 4t, sEV #5457 (KI5 W8 L2 5 F
SEAEE RS TS 5 IR A P i,
AR BT AN WA T SEV B B LI A R AL
(acetyl-CoA carboxylase, ACC). Fi %] ## -6- filf fi2 It
Z (glucose-6-phosphate dehydrogenase, G6PD) A Jig
[ 2 & B (fatty acid synthase, FASN) 25 3 2E flg Jii &
R ST, IXSEEEIE SEV H 10005 2 A4 e,
W R 335 i BT A 7 : ACC Ak Z R4 B A A2 A
WA A, G6PD #2ft NADPH, FASN JIF A i
G BURNIER . X sSEV S35 I B 4 A1
i AR R PN k2 Qi R P Y i i O =7
A pCBEE P, RIKENARR B R E RGP g
17 28 JfL SEV H (1) 4 5 % I It UL B (glycosylphosp-
hatidylinositol, GPI) ffi i& & [ 7] 38 9 R A0 S8, gk
/b Z W (triglyceride, TG) 43 fif, A2 i3t I 5 72
F B A, AR SRR SEV #EHE T ARBE )T

# (adrenomedullin, AM), T 350 I 5 40 i flig e 07

HEPUE (resistin, RETN) 72 5 JIf 4l Bl sSEV A [
—Fh R . HEEEZ (melatonin, MT) RJ i $ i) A5 5
ML SEV [ FF4R AL 35 RETN, a4 P 5T 9 8075
SRR B, gbah, sEV ]I i R AIG E
MR TH CD36 (142 1 i AR ] e B B %, o e e
Wi It 1 IR d I A SR SONE L A i R K 4
RS A R m e AR U fldn, 4N
RVE ) SEV 45577 I PR SE PR 1A o6 i 1 T i A4
(TNF-related apoptosis-inducing ligand, TRAIL)( T
G R IR AN R T ), FLE EREGE R T DRS
haIa, TGS TR F IR S U g0 4 B,
25 b, sEV I AEPIEE 7 (il B A B )
FE Wi Joa A 25 L R 4 B B s DR
2.2 SEVXRFRRKRAERIRZAE

fE MAFLD #tJg ', MASH 3 i 5 &
ZFAM. A, SEV S M ARV A BLAE FH AT
REE A T 40 M L 2 X — R Y, et
MASH K J&. Briifa i fis sAREoh, sEV 12 IE
RIEPWRIEREER . BRI R SBUF4 )G
B, MEEVEHEIREOE RS AOELE M, A
TH 57 U4 2 40 B R B AZ 4 R Y ) B R A i, i
O3 Wb JRE RVET YL A JFOBOE FF R -, [
H#E MASH # J& . A1 5 e A R R IR Y sEV K&
HAEATH) “ o587 XE 2 RE R E R
2.2.1  RFESRESEV XS FFAE 2 5E R 2 1E F

NERE R R B4 HE sEV B4 ple 5 BRIk, iX
J& MAFLD 45497 Jdh Jig (1 OGS Lak) Y. . A
Jiri A8 P4 B 4 M R P SEV B0 A% - BRI (0
NF-«B 15 538 B0 ) 51 & J0E OB, gh 4k,
AE S 40 M, o B A IR 41 B8 (hepatic stellate cell,
HSC). 354 410 (liver sinusoidal endothelial cell,
LSEC). fH% 41 i (biliary epithelial cell, BEC) J i
W FB 40 B (Kupffer cell, KC), 7ERF45 45 i 72 A i
Gy SEV U I I 2 5 SO w0, Ho
BEC £ 5 [ S5 4 B 1) 3%~5%, 72y IR R I
it B R E A e . JRUR R4k 1 R
B 4 (primary sclerosing cholangitis, PSC) /> f& IH &
4 M >k U5 1 sEV AR JH VIR A O AR R E AR KB
ncRNA H19, fANAMEIRIESE, X4 sEV AlK H19
R, JRms] e AR B E (small
heterodimer partner, SHP) [ 31, i 51 A& % 5E &
e AR A U 48 BRTIR, P AS R 40 R U5 1)
sEV B 5 RIEF VIS, HAgwn) “ 01 189”
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FESRAE TR IAE W 2 Fros .
2.2.2  sEVHEHT AL IR 43 1E T E 98 5 o 14 H

miR-122 J& JHFJJE 4 f % WL miRNA 2 —, F
PAAN AT 2 miR-122-3p Al miR-122-5p7" ", Hor,
miR-122-5p A {ig i A\ 28 20 s A% 40 e 7 0fn s 400
Z (THP-1) ZHiff {2 48 324 (M1) 24 B g4 Bl Ak,
M s (N T 2 41 B & Huh7 40 i ' ) miR-122-5p
A0 1) 5 A M Ak B A 5 A R T,
miR-122-5p 2 5 g i S JH S REAR I R 3%, FRAERT
YA 5 b R IEEEAE R T, P A
miR-122-5p 7] _F i X LHEHE O3 (forkhead box protein
03, FOXO03) £k, Wi 50E &AM 7. FOX03
Z 58, RIE R 4euifa ™, & MAFLD
R FETAR ARt A RE 5 A A I E IR T L TR
H1#] miR-122-5p % MAFLD H A& i £ 7", 4%
N2 5 IE S SE R R Sw L o

miR-192-5p J& T miR-192 K&, | iZH 4 T
M PRIBEARR ™, RS RGE, 4k
JEK) sEV & & miR-192-5p, -5 M1 7 E W40 v
b, AR FIF 29 . MAFLD H' miR-192-5p (#7553
L5 R 2 RE R IAE G, HonT i PR FLah ) B
% 2% (rapamycin, RAPA) #5k [A 7 i 25 28 A UK

miR-192-5p Activation
._ Rictor/AkY/

mijuu

Triggering

Chondrisome DNA

9

I \§

1 mTOR {85 1 (rapamycin-insensitive companion of
mTOR, Rictor) 1% 1) AKT & XKHEE [ O1 (FOXO1)
BERRIL AT, 23 FOXO1 iib - AN . 151k
ff) FOXO1 fE N N1, E i B e 2 A7 A
(frIL-1B. TNF-0) fI%, [N EHTRE T (4
IL-10) 31K, SRz E MR M1 Bk, R
K RAER T ™. Rk, miR-192-5p Al @ it i %
Rictor/AKT/FOXO1 15 5 ¥ 318 % 2 55 I JIE 2 E )
KA.

miR-223 fE % R G K B S A EEAR
F ™. miR-223 F ] {45 2 Fh 48 RE R T, W 4i i
4% -6 (interleukin-6, IL-6). NLR 5 ik itk g &5 #) 455 25
1 3 #%iE/MA (NLR pyrin domain containing 3, NLRP3)
G B B2 5 G L S A4k, miR-223 5 il
LT EEE AL . SORE/MATRGE & NF-xB {55
TP R R P R E RN, B
Y B AX 5 98 i B0 /& MAFLD R AR R & IR A% O 3R
5 0, miR-223 38 i I fi I 4 R A Y 7 0
% [K-F- Peroxiredoxin-like protein NOX1 (Pknox1), #
L 240 i A 22 S A B 2 8 R T (M) 1) B AR BT
RFA (M2) e ™, T I 42 1) I 4 i e Y
FALZE M MAFLD #t . 1th4h, miR-223 i&4F /1

3% Inflammation

‘ A —~ ™ @9 Pknox1
Bile duct cells A
) |H19 s
Adipocytes \
() @lR-122 Sp = miR-34a

] £9 ."I
5 Ei Inhibition of M2
S8 macrophage
- ” & polarization
Pknox1

kEMHEYM. ARPi. ErA0ME. SZAM%MSEV miRNA. ZBRiADNA. E AR AR, @it 2 ME5mgs 5

HIE 9 S o

2 sEVZERTAE ZIE F B9 {E M (B Fr i BioRender#2 )
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[ 1 /R HE AN J8 EAH ¢ RNA BT R, 2 53h ik
5 BE A AL 1 7 PV 45 T miR-223 W] 1 i) AT E
NLRP3 #E /A 35 46 f IL-18 B8, 9 %% MASH
N BRI RF I 0 P2 %, X e B $R 78 miR-223 7E
SRR FEF I 9w (W S AR

miR-34a JE T 3G RIS, PR T AE .
FAMMR T, FEHIIE PR &L, 7 MAFLD K4
KIEFRREEMEN. RIE. WEESA (reactive oxygen
species, ROS) AE i 2 4L T2 /& MAFLD [i1] MASH
FEAL SR R R P, miR-34a A4 S0k 7 S
AR R DT PR 46 . IR D 41 B SEV miRNA-34a
i ok BEL T M2 BB R AR Ak, 15T S S B Y,
$E7R miR-34a 7Efid & T 98 o 1) SCHEEH

Bk miRNA 4, mtDNA 1 5 JF fE % JE A1 2%
MASH 2 JH 20 i 4 W 11 sEV #5747 B 2 mtDNA,
A] B8l I TS Toll £ 52 44 9 (Toll-like receptor 9,
TLRY) 51 & 45E W P>, TLRY /E A iR 51 52
& (pattern recognition receptors, PRRs), AJ -5l H
FEAb I P s uE - B R - SRS (CpG) £ 7 I BOE
o KAk B Z, R UL 4 A7 mtDNA (1) sEV /2
MASH H1 G B 11 9% 9 52 7 3800 11 = 22 IR Y, xf
FR /IS BRIt 0 3355 IR 0T B8 A, A 48 1 0 B )
I PET & £F 44k, 10 TLRO % [H 5l % (TLR9™)
/IR PRI i P A i B £ A A R P 1) S 2 ek e B
TLRY Z 5 FWE£F 4k, FE7E 18 1 93 51 8] 4 32
Y g8 1R AR AN R PF, X B SEV 1) mtDNA
Al AEIE I i & TLRO M0 5 2h P T 40
23 SEVERHNEBRREFZHHIER

BRIy T4 sEVIEm M EARES S
MAFLD R 2 B R L] lan, 760G 851
BN FF AR sEV B S I o TR A &
B1 (integrin B1, ITG B, ITG Bl M FHIZ4IMR 5
JF 55 N Rz T A ELAE BT ITG B1 AT 8% MASH
/N BRI BE SR PR B AR AR P, SRR HAE
MASH (1) G B o AE 25 1 48 i 53 WA 1) sEV
L E & C-X-C F 7L K7 10 (CXC chemokine
ligand 10, CXCL10) & 1, HA[#% T KC &L,
WAL KC 3 — 5 Bl TNF-0 Z5 42 & R 1, 7]
IL-1 5 IL-6 {23 MAFLD [1] MASH #5461 1, g4k,
REEE I 4HRERIE T SEV & & 1 LIMA1 (LIM domain
and actin binding 1) i8I 71 [ 1 75 2Rk B, A2
HE MAFLD #HICHF£F 4k fb R A SCHEE A 1L
2.3.1 sEV#E R BRI 2 rh 14 H

JFFE W 4 B (4 0 JB 2 B R 4 il KC B

TR B MRG0 ) £ 45405 £ RRE SN AR A 0
PEF U1 R M A0 OB ) SEV #5737 TRAIL,
RIS S /N B BE R T M 4 R B e R A B,
Ik, MEEFIE AL BT E & P 2B (ceramide)
(Y1 sEV, FHrlid@id#ainlE S BV U,
HET 51 R IE 20 -

2.4 SEVIEMAFLDZ 4L 2L A EIMER

JH 21 44k 2 B 22 Fh B0 PR 3R 516 ) I &5 45
MY E A, RN L 4E L B B il % 4
SEIRIEIS FEVOAR, PR BE ROAE RN, FF ATk R
N RERE AL U7 1O I o AR o P L
W32 (alpha-smooth muscle actin, a-SMA). 4]
i 41 3 5 (extracellular matrix, ECM) 45 £F 2 A 5%
WO HSC, 3 IKEh 7 4E{L. sEV /£ MAFLD
LFYEAL T B IR R AR . #il 40, miR-128-
3p. miR-214, miR-19b. miR-107. miR-4715-3p
J2 miR-690 Z5 K54 sSEV K12 54 b (K
3)[60, 76, 103, 109-115]0
2.4.1  SEVRIEAImMiRNATEFFLF 44k H i1
2.4.1.1 HSCH#IE 5 miR-128-3pfE JFF£F 4 4k H (1
YEH

R 20 A3 A0 A T A A T A 2 B O A
i, 7S HSC iEfk M o, miR-128-3p A4 HSC
e P A,  E fH PPAR-y SR IA {2 #E HSC i
1B U, IEH HSC PARBAE4EA R A (vitamin A) [
RORSAEAE, ML 5 WAL R IE o-SMA KL
AT 4E AN (myofibroblasts), 36T P& F 43k
R FE . EAERNE, KRES ECM &K
JE DR SR F 4 40 1) A & MR AE 1T R U,
miR-128-3p 1] AT A HSC IRBN 4 4Lt e
2.4.1.2  SEVRIEMImiR-2147E FFEF 44k i The &
L]

Bk miR-128-3p #I, T 41 i # miR-214 {11 % 5
FIA W] 0 R I R AR e AR Y. B B S A
LR, 1ENEA HSC 84 55 73 W5 5 (40 TGE-B) #l
PO A P (A B R A L AR ) SR VR )
sEV i1, miR-214 Fik Liff, HFEF2 8507/
HFASRE A 1 (twist-related protein 1, Twistl) L 25 A
E-box JufF iz " 4R, Chen 25 " R Hl, miR-
214 235 PEAR T 5 804 4 40 23 48 K IR F (connective
tissue growth factor, CTGF) ik t, #Eimifeit HSC
TSRSy T4k R miR-214 [F L]
FAAESPL,  AH FLIE I AN [R] i B 1 I 2T 4R AL 1 1
L A o
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