#3746 H 121 A Vol. 37, No. 12
2025412 H Chinese Bulletin of Life Sciences Dec., 2025

DOI: 10.13376/j.cbls/2025165
NER/S: 1004-0374(2025)12-1697-10

LncRNAE 1 Hippo s 518 B F1E & X 15
BOR BH, HEAY, T

(17 PARE B A BE, T 5105005 2 ) MAKE SbeEsh 5B b,
JUM 5105005 3 7R E HB) T RIS SEFEE SR, ) 510500)

W OE . NE MRS EE AR E S E YRS RS AR S ASTT, (ARE. WA ER R
FIWOX —F4, 5 KB B RE S5 U . KEE9E4RIS RNA (long noncoding RNAs, IncRNA) 1 Hippo
GBI T2 S 5 R T AN e AR S R R A A S DR R, 0B AR A R
fEAT. [FIBT, IncRNA thEE# IS Hippo 55l 1% 00T G5 X L RARW ERESSE RS 24
1M, A R Z 5% IncRNA 3833 Hippo {5 5 @ #1288 AHE LS 2 gs. £T i, ACGEEN
AR SCHR, UM IncRNA F1 Hippo {5 S I\, & 45944 IncRNA i Hippo {5 5 i #% 42 5 A 1% O
B, 7 E AR e (LB Al .

X817 : LncRNA ; Hippo {5 S8 ; B {Cut

FESES : Q527 R336  HERFRERD : A

LncRNA regulation of bone metabolism via the Hippo signaling pathway
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Abstract: Osteoblasts and osteoclasts orchestrate bone formation and resorption, maintaining skeletal homeostasis.
However, factors like aging and hormonal changes can disrupt this balance, leading to osteoporosis. Both IncRNAs
and the Hippo signaling pathway are key regulators of osteoblast and mesenchymal stem cell differentiation and
function. LncRNAs can modulate bone metabolism via Hippo pathway components, signaling crosstalk, and
metabolic reprogramming. However, there is no research in China that comprehensively sums up the mechanisms of
IncRNA in regulating bone metabolism through the Hippo signaling pathway. This paper aims to fill this gap by
analyzing how IncRNAs regulate bone metabolism through the Hippo pathway, offering insights for managing bone
metabolic disorders.
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M 2 o BB R ik 23.1%), 3ROR B R ©
PSR E B R R . DR, PR T HL AR AL 0 B
) 25N RIE R S ek 4 B PR 9 A 4H B AT HE S () 3 S
B . W7ER, Hippo 155 @EK/EN— ik 1
DRSS 5 48 fE R BSE AE . TS5 T X
HK, WIEE S5 Rl g0 -5 i 4 M S5 2 23
it 1 38 B 5 2 U 45 B AR e 1 2 T IE 5,
IncRNA 76 Bt R 4435 o e iR U, A
fieil it Hippo /5 5@ B2 5 &AW M. HEAl,
W 2T IncRNA J# 1 Hippo {5 5 18 B i 42 & A5
AR EEIR A IE . BT, ASAELRE EH A4
SR A, MEIA IncRNA 1 Hippo {5 5 18 4 %]
BARW R, I3 IncRNA @it Hippo 15
5 10 4 A B BAR ML, B A B AL SR
B AR I T ST AE T B8 PR BRI o

1 LncRNAIFIZEE L5

LncRNA & — KB A H EAY) ¥ D Re K ik
A% RNA, 5% RIEE L R & s Y,
WHFER W, IncRNA 1] 2 5 AR 7 & AL L0 i )
P, BL4E 8] 78 5 T 41 Bl (mesenchymal stem cells,
MSCQO). & 4l il (osteoblasts, OB). & 4l i (osteocytes,
OCY) M Hi B 4 (osteoclasts, OC) &5 1,

MSC R &5 K4 ae, iM% S %
N R A A R R A B BB 4 B S 2 Bl 4 g 2R
AU R AW, IncRNA A 55 810 78 51 T
ZHHf (bone marrow mesenchymal stem cells, BMSCs)
(¥ RRCE BOIR 73 b friZ . 1 IncRNA LINC00205 j i
I 25 W B miR-26b-5p, FEAK T miR-26b-5p X #i 2
T S ME H L 86 72 1 2C (lysine-specific methyltrans-
ferase 2C, KMT2C) HMHIfEH, {f KMT2C B
K BT, T KMT2C B Runt AH 58 3k K] 5 2
(Runt-related transcription factor 2, Runx2). #i £
J#: 1 (alkaline phosphatase, ALP) FlI5 45 2 (osteocalcin,
OCN) 55 Jil i Al B FE R ks, g i 41 i) N 2 ) 7
J5i T 41 il (mesenchymal stem cells, MSCs) [r] % & 4H
f 734k ™, LncRNA SNHG14 i i ¥ 45 W it miR-
27a-3p Y55 miR-27a-3p X 1% 4F /28 [ Bl (lamin B1,
LMNBI) mRNA [0l /ER, il sig 1 PPARy
1 C/EBPa 13RIA, ti3E BMSC i Billa 710 117,
T O R AARE U

BCE AR T E T R O A R, IR T2
B % T, @i 1A IR B SR T
AT R AR Y, o zign

Runx2. Sp7 # 3% [A T (osterix, OSX) %54 5% [K -1 LA
J WNT. BMP %5 5@ iR, 35005 400
EEL MR 5B AR U R P47 "™ ). LneRNA 1] 4%
BCE A58 5 04, G s A A R
IncRNA TUGI 3% 12 #7 £, 1 K % ik IncRNA
TUGI Al Q] WNT {5 5 38 #%, 3517 400 1) 55 40
JH () 388 5 A1 404K P9 LncRNA EMX2-A S ik 11
EMX2 & F 8 % 1] 59 EMX2 %} Wnt/p-Catenin {5 5
A % 1 G %, B B s 46 Y. LINC-
01094 75 5 B A4 hE B s Hh ik B, ol
o A 4 ol L S M R R A R R AT I
HE— AR KB, LINC01094 il i %8 1] miR-3623p
I R AT E Ik k= g5 A

B YA ) AR —, i E Al
MoK, RNE S, I A R 5 AT
VT 40 R O . AR 4E Rf B H 23 SR A
DRE A 9B A DL R SR R w2 ATL A S g 7 T
REBZ(ER . ERFAR LT FEd, IncRNA
RIEEE/EH . 0 IncRNA 953Rik it 454 & H
CCAR2 (cell cycle and apoptosis regulatory protein 2),
L 5418 A % OBELEE | (HDACY) i %, S
OSX Ji 2 T [X 38k it H3K27 2 Z Bh Ak, A 1 470 1
OSX FIAFIH A LhfE *. LncRNA H19 j@ it 411
2 S S 1 )5 p53 AR 1 4 e L 40 1) 4
R, e E s .

Tl B 40 B 2 AR A/ R A P v R AT
K2 BN, FEYERE AR b A S A
F B9, FER 4R M, IneRNA (1 1E FH R BEAS BT 85 o
41 IncRNA-Gm5532 7E 1% 1 4 1 A B i) i 72 vp 3k
A T U Rk T ARG VA AR B R R
(cathepsin K, CTSK). #&Jii 4 )& & H i (matrix metal-
loproteinase 9, MMP9) I NFAT 5% i f) % % Kl 1 i
16 T %A T c1 (nuclear factor of activated T-cells,
Cytoplasmic 1, NFATc1) &5 4% F 4 i AH < BB 7~ (1) 2 H
FIk, NI BB 40 P A R B g BT S T
iff 7 & W, 7E IncRNA Norn %% 3£ [X] (Norn ¢TG) /)
B BRI A B IR T BE RIS 5 TTAE Norn
RN B, R AR AR R B RS T RE S i, R
71~ Norn AJ 38 1 1 15 NFATc1 f#% & Az 40 1 5 B 41
L0 A ORGP

BE 4k, IncRNA & 7] 38 1 #8 7] £ ] T miRNA
H] B2 4% B AR 40 IncRNA-SOX20T nli i 45 &
miR-194-5p, fi#F% miR-194-5p X RACI (Ras 155 C3
WA TR KD 1) B, (e Bk 6 40 i 2 1k
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A zh &g ®, #E B8 W7 T 48 B (human adipose-derived
stem cells, hADSCs) fil'& 774t H, IncRNA PCAT1 Fl
Toll ¥£5Z 4k 4 (Toll-like receptor 4, TLR4) £ix T,
Il miR-145-5p | f%. LncRNA PCAT!1 i id #§ 47 1F
M 45 4 miR-145-5p | i TLR4 £ &, {& hADSCs
BE 2346 P LncRNA MALATI i it miR-124-3P/
IGF2BP1 % 1] ALP. ‘&#r#&H (osteopontin, OPN)
Al Runx2 ik, {2 7 & ¥) 57 + 48 e (periodontal
ligament stem cells, PDLSCs) [i] i E 404k B,

25 b, IncRNA 7] EL#AE H T AH < B I 1 5
B IR T, MSC. BB A, A DL R
Tl B A0 MR IR IS AE S T, T E ¥ 4R R P miRNA
) v AR (R 1),

2 HippofE S B BKIFIEE K

Hippo 15 5 18 & 7 75 % 5 R W8 (Drosophila
melanogaster) 1] i A% 9 1% 4 K I L 08 Ak N
Hippo FH il (Hpo) AL FHH L FEIE L, &
IR Sk 0 S 3 R S LA A, TR R
(Hippopotamus), #{ 15 It 44 B2 Hippo 15 5 1# i /&
— SR AE A b R ST A S m R, A A S
A AT Bead w /N AR R AR S E R B 7R
FLEhWIH, %0 % %O A o B FEI L3 STE20
FEWES 1/2 (mammalian STE20-like kinase 1/2, MST1/2).
SAV1 # H (protein Salvador homologue 1). MOB ¥4 [if
WG RF 1A/B (MOB kinase activator 1A/B, MOB1A/
B). K 83 401 1] 55 B4 1/2 (large tumor suppressor
kinase 1/2, LATS1/2). Yes #HCE [ (yes-associate protein,
YAP). 7 WW G5 #6380 1) i 5% 0 715 77 (TAZ) Al s

14 5 A 2% 45 #4) 35 (transcriptional enhanced associated
domain, TEAD) &, 8 i S0 e s 3 30 DR+ A i
B2 06 S 7 e s il iz B, LB RRAE N « (1)
YAP/TAZ TFRA 5 v B T 4R B L R R, Joidsadt N
YN M AZ S R UERR ALY 5 (2) LATS1/2 # b B
MST1/2 5 SAVI1 & Sl 5 & R s,  HBER K
SEA PR EOIRAS 5 (3) YAP/TAZ J B AE4n oo,
Tk HENAR A%, 2 I B O () LR AE 5 (4) R
i HE N ik A 1k, YAP/TAZ &% 5 TEAD 45 4,
IR b= TR W~ v vi N S 1 T B BU I i
YAP/TAZ BRI KT LATS1/2 BSIRAS S YAP/TAZ
V40 i 5 57 5k ) Hippo 15 538 % 2 75 30E BT,
1EH#H, Hippo {5 5% Id 8% MSC. B
YA B AN R W A G A Sk, dERRE
*%!?S [38, 39]o
2.1 Hippofs 5@ IFEE 7t R T 40 Ak & - g
Sk

W52 8, Hippo {5 58 % 7 i £ 5 BMSC
15 N f 22 P i 2 b R P iy i e s A 0 . 1
MSC B s~V # A 5T h  I,  BCAT 4E 4 i A K
[X-¥- 9 (fibroblast growth factor 9, FGF9) {f N—FH 1L
HHERE R P RIAMAMEE T, @ik BMSC 41t
WA e, WFgt &, FGF9 wliEid HA2/k FGFR1
% Hippo 15 5 8%, 341 BMSCs H1 YAP1 i@
b (p-YAPL) /KF, [FIIF, BMSCs 75 i i A sl AH
S ff 5L ( 1 CEBPa. PPARy 1 ADIPOG) [ % ik
KPR HE G, R A SGKE R ALP. Runx2. OSX.
[ B R al %% (collagen type I alpha 1 chain, COL1A)
FIE TS 1M Hippo {5 5 18 i 40 1 77 ( 41 XMU-

%1 LncRNAFIE &4 5

KEEIEZMITRNA R I3 FHLH ife SR
LncRNALINC00205 PNE S i il o) ALP| IR [15]
LncRNASNHG14 B i 1) 78 o T 40 P PPARY|, C/EBPa) BT [16]

g A

LncRNA TUG1 gl Runx21, Frizzled-21, Axin 21, B-catenin{ =S AL [20]
LncRNA EMX2-AS D= EMX2 |, Wnt/B-Catenin{ SR [21]
LINC01094 JE 4 miR-3623p| A [22]
LncRNA 953Rik EEg) 0SX| B [24]
LncRNA H19 B p53] B [25]
LncRNA-Gm5532 La=gii0) CTSK 1, MMP91, NFATc11 e [27]
LncRNA Norn itk B 41 NFATcl | e [28]
LncRNA-SOX20T itk B 21 miR-194-5p| =) [29]
LncRNA PCAT1 JIg 95 44t e miR-145-5p| AN [30]
LncRNA MALATI I JE ) T4 miR-124-3p| BIE T [31]

e MR B L H0E) R



1700 A

374

MP-1) Re1¥ % bt 72, KB FGF9 id i 0% 1% 18 #%
fie it BMSCs [r] Jlg Ji7 40 /1 (adipocytes) 734k, il Fe
[F) R 40 M 4346 B, B Hippo {5 538 5% AT 76 14
2 BMSCs B it #2 v R $E B EH .

A NSRS /TG T B MR AL T 1Y K R
I, RILYAP 7E MSC I b h R is. [H
B4R SE G R B, YAP X MSCs vl 5 ALIER
e s i aEE . Mf] YAP Rk & 5 8845
AR . ALP WEPERE(S, Runx2. OCN Al OSX
FIE T W, MSC HUH /132 E 3] . LATS1 Al
MOBIB & Hippo 15 5 18 # ) 8 8 1 8 1, i
HRIE T POE 1%, FEYAP M TAZ W& L i
BT 5. YAP Al TAZ 3 N4 i #% 7] 5 TEAD
ghty, {EHERCE T ALP. OSX. Runx2. OPN f{]
Feik. WFFIRIE, miR-135b-5p A3 i #14 LATSI
1 MOBIB % YAP/TAZ-TEAD 15 5%, 14/ YAP
1 TAZ #%F£IAFE 3, TEAD &, JEMi (2t hMSCs
e kB

EIARHT S W], WS Hippo {5 5 8 B8 W] 75 A
MSC i BUIR 7 g, {2k MSC slg 434k, 4
il MSC % 5044 o
2.2 HippolE SERBIZR B AL

FERCE A, Hippo 15 5 3 B [\ B & 15 &
BAEA . WRACRIL, 1ERCE A SR I YAPL 7]
I il DNA% & 4> 447 2 (4 1 (inhibitor of DNA
binding 1, ID1) ) mRNA & [ RIE, (iR
oA B — I DB T JE A T A R ) SR IR AT AT
F B, YAP GE7E MSC H'if 5 cBmp2a ( 4 i BMP
TSRS LR ) R, AT TS A AR R A A
T BMP {5 55 S, (ks g o e B et
BRI FREERMT, BB YAP FIR 22 5r %
WOE & HEF (MAPK) {55 8 B80S, Runx2 4%
B T IER N, R i st T AT
WL, Hippo {5 58 % 75 0 1] 5 4B 2 4b 3 72 o 4
HEZME,

2.3 HippolS 5B EEE 4T 1L

FEB I AL RE . Hippo {5 = 8 it 4y 18
FHIEMO., AKY, KN YAP/TAZ k&%
B 40 B 5 5 1% MMIP13 (matrix metallopeptidase
13). MMP14 (matrix metallopeptidase 14) F1 CTSK [F
Kik, SECEAHY LA Z B E P 7R gn
MR AL IR SR R B, YAP/TAZ 2 HUBORIENT,
MAH AR A%, 5 TEAD 454 BOm 0 bk 5 3 A
YAP/TAZ $f5/IN R BCE A7 ALP. Runx2, OCN

HI COLIA Rk T, H4iMun e/ Fi%E. AR,
Y1 B AP I R B (BB Agrin n] B HIH] Hippo {5 5
i % 5 48 Rl 7 (40 Merlin A1 LATS1/2), 133 YAP
W ML LR R R IA, B YAP #4011, Agrin
Il o I A A IR R R Ik, BoR T HAE TR
ATt E A Y. @ _ER AN, Hippo {5
5 108 % 0 A7 I 4 M R I R
2.4 HippofE 518 BT & AR &£ B AN Th&E

TERE A0, Hippo 15 5 18 B 1 1 42 /F F B
AT 2 BB/ R (P ETIER AN ) 1Y
Tl B 0 11B- IS i i &0 1 28 (118-HSD1)
FiEM N, 11p-HSDI1 w i@k 1] YAP 3Ri5, {2
HERCE AR A B BkAh, i3RI TEAD-1 /] &
FUHE 5 A W 3B (glycogen synthase kinase-3 beta,
GSK-3p) ) 2 4T Al NFATel RIE /b, 3k
PR A & . AN, 24 Hippo 15 5@ B
BUERS, TAZ 2P IE R B fE 4B M st Toik
BN G0 A% R A L S RO Th R, TAZ BIERR
B I fiE 3% 2k 4> 5 3 TAK1/NF-«B 13 5 Hlt () 305 .
TAK1/NF-kB {5 5l (130 2= 53 S0k B 40 B 16 701k
I W ST R K 5, AT D R B SR R . IX SR
Hippo 15 5 il il il 1% TAZ WG tEfE Az, AT ja
FERS ORI A A Th RS A B R B

25 I, Hippo 15 7 il i1 1L ¥ BMSC. lH
M B 2 PR B e A L AR i S D R R AR S
FEE T O & RSO FE rh R HE AR, s
AR (& 1),

3 LncRNAj#Eid Hippo 5 5@ BiE1E B i

3.1 LncRNABEIHippofs 5B EAITE) 7 RTH
ikt

LncRNA F Hippo {5 5 18 % 5 g 8 42 & AR
o AR, IncRNA & 7] 3@ i 5 Hippo
{55 I E A EAE A, BEim SEELR B AR RS A 2
filan,  pSOULZH M RUE Y A A Prex2 £E C2C12 4l
NIANBA R E T, EE#E BMSC s 704k
SRR R ESREEE R . MR Prx2 W HL 4RSS A
IncRNA-MIR22HG )5 87 X3, it HiL sk
ik, )5 E R 4R W miR-128 W 5E YAP [ £k
A% 5 A0, M AR 3 BMSC B 0 4k B, 3R
IncRNA 7] i i3 Hippo 15 5 i i U 4% i AR i 2.
NS FHE T4 (human dental pulp stem cells, hDPSCs)
o1, IncRNA H19 il 35518 5 145 5 2 2 [R5 2
(enhancer of zeste homolog 2, ZEH2) #| LATSI ] )5
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LncRNAGH I Hippof 5 i i 1 725 A 1701

8 L
| _]EEEWMRWZ OCN.  CEBPq, PPARY,

AREHR

A
=

SV
0sX, ADIPOG i H .
+— ALROPN, '\Hlppo signaling pathway

b

OFF

R B AR

T .
/ (E?,‘.[‘,' \,-Mﬂ) GSK-3p —|
Y vipaso
MMP13 | OCN, NEAT‘.s” :
MMP14, CONA 2
‘ CTSK J- —b/ | (l
""*“ @
g QL
=
- MR

[E1 HippofsSi@ERIFIEE RS ~EE

X, %5 H3K27me3 (4L A H3 (K5 27 1
wE e = R R L), T | LATST ) & I8
LATSI1 #& Hippo {5 51 B (1) SR 45 K7, L]
SEYAP/TAZ S HEIEIN. YAP/TAZ 305 7] 2
it hDPSCs [ RHE 43 fb EFEALERS . 1R 5256t
FH, i H191¥) hDPSCs g2 i3k F BRI 1
AR, T LATST VK & A fiix —id 2. X gk
FHLIR IncRNA H19 JEid EZH2 ##i ) LATS1 H 3%
1L 145 Hippo {5 T i@ B, HE1i{i2 i#F hDPSCs 1) 434k
Azheg B, X —HLHIHE R IncRNA 3 31 2 W i3 4% 14
FE520H Hippo {5538 B, 280 42 i A8 i 12
3.2 LncRNAJEidHippolE 5B EIE R B AR 3 1L

FE B 40 i o ik B2 v, IneRNA 5 Hippo 15
5 d B AR R RS T 2. B AT AR B,
IncRNA 7] i i Hippo 15 5 i B 52 e B B A 3 1t
TSI R 4R S EH . LncRNA BCAR4
A L 5 Hippo {5 53 I 1) ¢ 8 20N 8 (1 YAP A
HAEH, WS HEAANLE Y - YAP BUE
Ji 7] Il BCAR4 {1 %175, BCAR4 [t —5 5

Hedgehog 15 ‘5 1l % FI UM 22 Gli FKREFREHE 2
(GLI family zinc finger 2, GLI2) ¥} [FI4E H, ¥0i& b
W% 7 5 B HK2 A PFKFB3 (M43 . X — i F K
M+ BCAR4 5 GLIR2 JE M E &), @i 5H4l
E A LE £ (E1A binding protein p300, Ep300),
AL R 1 H3 5 27 A% R (histone H3 acetylated
lysine 27, H3K27) & ‘£ Z. Bt tk, {2 38 0 i 2
(hexokinase 2, HK2) F 6- i A -2- Jll / Fp -2,
6- — T BZ ¥ 3 (6-phosphofructo-2-kinase/fructose-2,
6-bisphosp hatase 3, PFKFB3) # 3%, MM 3 58 b
B fARE I B MR P FLIR T & R IR RS
M 1 (monocarboxylate transporter 1, MCT1) 3 A 4H
M, FFE KA S S T La (hypoxia-inducible
factor la, HIFloy) M F3 e 14 M Fovs P, (e 2k Bl 4m
A 14 43 4k B9, Bl IncRNA BCAR4 3@ it 5 Hippo 15
SR YAP AHELAVE L R 0 TR A OC BRI HK2
A PFKFB3 ff)4¢ik, SEomblmg s e, AR FLIR
% MCT1 #i8 3: 4252 HIF Lo, {23F BUE 40 i k.
f1 5 2, IncRNA il 1T Hippo {5 5 1B & 7242 3k B
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S o A R R A AR .
3.3 LncRNA&E i Hippo s 5B B & MAAEHY
E 5 ThEE

TEREE AR, IncRNA AJi# T Hippo {5 5 I8
PR R T H B AR RS T RE . B FidkiE, RORI-
HER3 #1 Hippo i % 2 [A] {7 A5 F.4F H i# 1 IncRNA
W 7 AR 3L B e R . A0 LS R T 2 R T
Ji (orphan receptor tyrosine kinasel, ROR1) ZEf#£5 i
R, ATEAL A Tyr1307 A1k HER3. BEJS,
p-HER3 Tyr1307 4 353& FC#% 25 1 LLGL2. IncRNA
MAYA #1 H It #% £% filf NSUN6, ¥ i ROR1/HER3-
LLGL2-MAYA-NSUNG 15 5 4l, 1%{5 5 Hlinf 7£ Lys59
i %4k Hippo/MST1. X Ff FF JE AL 1] ¥ i MST 13
B 1, JFBOE YAP Ko H B0 R R 45 46 4H 21 KA
- (connective tissue growth factor, CTGF), 1 CTGF
REVS R A, TSGR E R, SFEEE
B BTN AT 50 R AT N AN SR B 41 AR Rt
FEH, IncRNA MALAT1 fJ3RIAEE T, MALAT1
A T R 2 PR AR S, T OB i R A
FRFEPBIER « %M 7t iE i RNA %2 iiE (RIP)
SEIESE, MALATI Refi 5 TEAD3 SHE4 & .
TEAD3 fEE 5 NFATcl A EAEH, ki 5% NFATcl
() 3% P, A 2E B R 4 B R AR R A D RE. AL UL
IncRNA MALAT1 i i 5 TEAD3 45 & 4l TEAD3
5 NFATcl 2 [8] ) AH AR FY, 3 1T 400 i) NFATel [
T, A A R AR R e 2D IR
W], Hippo 7 Tl 7] 25 IncRNA MALAT1/miR-
181a-5p MR, 4HARSEIRIER, fK3RIA MALATI
i3 1 miR-181a-5p ¥#i& Hippo 15 5 i i, il
‘B R 400 L ) 8 AN B O Ah, A SRS
2 R B R A D 400 R T R K Y. E T O,
IncRNA MALAT!1 #] 3@ i # i) miR-181a-5p il Hippo
GO, MR RER A R G S Th e,
T T 422 R 2 T B 40 R PRI D e o

25 I, IncRNA 7] j# i 5 Hippo 15 5 18 i AH 5.
EH, R4 MSC I - G 70 A0~ i 4
L P 284 5 0 AR B S PR 2 g, 8B T S i
AR
3.4 LncRNAEd Hippo5 S B IEIE T KIFHWE
ftb AL

B2 BMSC S A4 2 4F, IncRNA it
AliE Hippo {5 5B = 2. RHESIRE, 8L
MR HARE AL (s R . UEY
o TE R A4 AE ) T B Q. 40 Hippo

I S (R % 00 BB 4y F YAP/TAZ 38 3o R 42 T e e
Al (41 CTGF. CYR61) it it 7L s dn e it # . 12
Z M E . H P, IncRNA MAYA 5 LLGL2 fl
NSUNG6 JERSE G, @i 54k Hippo/MST1 1]
o, HEE YAP/TAZ 81k, 3k A4
WAZ, S R0 CTGF 23Rk, fEitnig
S A R, HEEh AL B R . IhAh, TE
BEMIA R, HIF-la 5 TAZ M EAEH, #—%
Waom 7 LR e R R, IX S L R A,
IncRNA i ik Hippo {55 5 18 2% 1 2 Jif J88 1A 15 A
AR R, EFLIRIE e R b R I R 1Y

R RERGAMENEEERERZ —, Hl
il 5 Hippo {5 5 W B& 1 R A2 UM G . B AF 8 4
1, Hippo {55l %1% .08 [ YAP/TAZ 4% @ i fl
TEIE IR, S EURCE AR BB TE GRE S
[ 0 L AR 8 5, AT R R s
WSR3 IncRNA (41 Bmner) A] ELEZ14% Hippo
WK« Bmner i M5 TAZ 18 595 ME4ER: BMSC
(I RCE Z AGRE T, 3 TR el o 2 I i i e R
1M TAZ IR IE NPT X — I R, iX 26k B 7~
T Bmner-TAZ V% F/E 4 FH RS R e s E
AE RS BB IR SR AL T B R 4 T s Y,

JIES R 2 o 1 A B 7 AR R R . — 5T
FE 34 P 3t 22 10 g 15 2L 23 4 43 i 22 b 9 RE TR 7
fEWT A7, 40 TNF-o. IL-6. J8 345, XL 1]
e B AU A TR A, 0] 20 PR 1S 5
G PR il R iebei i = it N P R PN 1 =
B AA R 1 [R]IA BF 7E 278, IncRNA H19 7F
AR AU A 5, 5 Hippo 15 538 25 & IR
FAOCI B BRBRAARE 2 VIMI5C . 1 H19 768 BUSAAE
R cle s vl w1 I BN 1K D Vi s R A AR i g
B 20 T IR BRI A . ELMLAEE B A N se Gk
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