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Research advances in the regulatory role of endosomal

Rab proteins in viral infection
DONG Ping-An"**, CHENG Rong-Rong'*”*, LI Xiang-Rong"**, FENG Ruo-Fei'**

(1 Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education,
Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; 2 Key Laboratory of Biotechnology
and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University,
Lanzhou 730030, China; 3 School of Life Sciences and Engineering, Northwest Minzu University, Lanzhou 730030, China)

Abstract: Rab proteins are a class of GTPases with molecular switch functions. As key regulatory factors in
endosomes, they not only modulate physiological processes such as intracellular vesicular transport, signal
transduction, cell division and fusion, but also extensively participate in viral infection processes. This review
systematically summarizes the biological characteristics and functions of Rab proteins in endosomes, and focuses
on their regulatory roles in viral infection, laying the foundation for in-depth studies on the interaction mechanism

between viruses and endosomes, and providing references for the intervention and treatment of related viral

diseases.
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SEFERIE . 5 RN A8 R R S B IS B 1 % AN B
B HAh, Rab AL HiFEMRAK, EA
s K5 5 S AR, TER, TR
B Rab & F LR 5 e FE 1 4% 5 244
W RIRTEANIR . G RN G B BaE L . AL
ZRIR T AR Rab B A RIS, 454, Thfig AR
TG R R, HE—2DIRAE TR Rab H21
EPEEDIRE IR, IR AU 5 5 A AR AR
VEFIBLHIBEE 136, IO DR B3 M 1 T 10
MRIT RS %

1 AFHRabEBREYIFHE

1.1 AERKIE. 72LFThEE

WARFFAE—DNERSI . TCAAAE R4 as, 1
N EE NS P TE P 2 g5 4, HAZ O IR 2 4
MO N AR . A RAR R BB B i N BR 2 I
S TAREDARE, 8 B AR I AN (early
endosome). Hf 3 P 14 (late endosome) 11 P4 P4 44
(recycling endosome). N 4 B A 7 ik 1 T2 & 4514,
AR AR R R A SR . flan, 755
DAL [ra) GG S PR A A R A AR i R b, IR T A N
Re¥ e RAERERE. A, WNEEN pHEZ
BRAE, IXMERIEIAGT B BT TR 4ERE, X T2 AK - T
A 4336 DA K B O PR TR o e S ek A R 0GR
2P RIS B A AR HE T, AR KT
. PR, 15 T s LB S A
Y IhRe, A0 s AE BAL I A O AR A .
1.2 A{xFRabZEHAIFA

ANEI BT BB AR AN [F] ) Rab 85 g4, Ix et
AL S H B R IECEIEN . BN E—
MEERAN . BIRMEE, SRR, FEH
i (B 122N 60 nm) Al K % ((H 132 300~400
nm) FR Y. BTN AR AR 0 3 AL Rabd.
Rab5 A5 N A& $1 )R 1 (early endosome antigen 1,
EEAl). M NAR £ 52 5 505 Bk 2 8 138 i
EHEA T A0k I H 23K . H a0 i 5 A
PRbREE A EEA Rab7 fil Rab9™ . JEH A KL
BER, FESATMEWIE, f£8RRI. %%
LS4 M oy 54 S B AN B B 45 O T R DG B AE U,
H A 2R EE N Rab8 1 Rab11™.
1.3 Rk RabE QR

WAL 5 V2 Rab BEH, EAIZHEA L
ILFE P, HHRRTR G gk, SETAER N
A C AL ARk ™. Wil 1 fis, Rab EAF G

SERIER T 5 A o BB (al~a5). 6 A B T E (B1~p6)
A S AL IKALLK (G1~GS), I H AR 25 Mg™
BEER. G EMBAaEWA TP, 7T
Z K G2 (57 IF ¢ 1 (switch 1) FIFL T G4-02-G5
(17> 5 JF < 10 (switch IT), J& Rab & 15 AR
FUn GTP EfH#E 2 H (GTPase activating protein, GAP)
Z AR A AR EAE R s AL M. Rab B C e
C. CC. CXC = CXXX #fAk (X Fon L H R )
gifyil, HNImnl s C w47 7 —
kst .

Rab 5 A 1E A A4 A AN [R] i B2 AT R € D)
e, X LEMURE D e BRI T BT % B I 4
IR LI GGIRIAEL, X —IREN 2k - Pk 4
BV HRAL TE B A E M, TR R A AL S
R (5 R T 2 ARG R E B 1 Rk, B
AR Rab B AESE 1) E L H AR 7% - Rab4d
Ol R Y His39 SREL AT 5T RS &
WZ, MR H GTP KA1 28 e id R 5 Rabs
B AE B WA A% R A2 ¥ Al F (guanine nucleotide
exchange factor, GEF) FI{FH N2 #kiE 1k 1) Rabs M
ZiiiioNpig ey s 2SOV S P i BURS  AR R e S
W Z RN EERAGE ST " EEAL 2 —Fi K5
h R e A 78 — SR Ak, B —AN N i C2H2 £#45 (zine
fingers, ZF) £ f4 35k il — A~ C %ty FYVE 45 #4 33 7,
H FYVE Z58380nT DR R TR 1 9 45 & i MR e LI 3-
1#% 2 (phosphatidylinositol 3-phosphate, PI3P), M Tfij
Wk E R RN Y,

WS N AR 32 B AR Sras ot H R N A R
MK GTP-Rab7 I 4 HAHEAF I & 1 Rab 45 57
fiFA 55 1 (Rab interacting lysosomal protein, RILP) A
BACE T WG S AR RN AR I b, ) 3R R AR KA
TRURHE PR AP, IS 80am Ay 1™, 1tk
Gb, FEGHN BT B A (A4 LR ) IR B AR AE
TGO T, K 1 B Ak b 446 1K) Rab9 /] AE AR Sk
RAE SR IR E, 2B E T AR T A MR R
R R -6- Wi IR 52 A4 MR Py Ak 1) e 2 2R
FEAR M 2% (trans-Golgi network, TGN) )iz 2%,

TEIR AR R A, AT 59 IRFA . o,
Rab8a 5 Rabl1a 1 Tt i 7 48 g Th [ i) I 3z i 1o 72
HVE JEETE . Rab8 1 A GBI 43 1 SC His 4 1
BH T, 254 REEE T b 40 A S ht A 4
(cytotoxic T-lymphocyte-associated antigen-4, CTLA-
4) FE T . Rab8 i i Hi% A6 30 (GTP-Rab8)
FES PSS G 0% X AR #2 K (linker for activation
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Rab [ E 2l 5Nl iE . 641NB ) BRI HBEANHESE,

BEARIE BAT AN 77 IF SR IX I8, A 2 1 5 T8 EL AR 1 2 A

ms HCHRC, CC. CXC Bl CXXXIRAR(XFRR KA IR S5 #1,  HNIm T 4R 5 Cim - M BT 7 X L g . AN

fURabEE F 2 72 M SR S5 A LA AT AS R g

E1 RabEBRGEHREE

of X cell, LAX), JE% CTLA-4/T 403244 HH A
7> ¥ /LAX/Rab8 54, {21 CTLA-4 i\ TGN
BRI R THMERN, HS5HH %% R (imm-
unological synapse, IS) A Ab it 72, AT 4% T 4
FRL B35 A R0 S 2 J N P, Ah, Rab8 A fE RS 5
JULIR EE 11 I ) 8 4% A 2R 1 1 L P 9 2F B, Rabl 1
i 7 A Rab B EER 2 4b, B 24 RabF 1
{4 (RabF 1~RabF5), RabSF f5{4 (RabSF1~RabSF4)*",
XS R 45 3L [F] 5 Rabl1 5% K35 1Y
MEAEH, 2520 i &2 AR A AR 0 6
Wit FE. UbAh, Rabll A5 208 K1 FIP3 (1=
WARTE 1% Rab11-FIP3 &4, & 1IzhA BAEH
s NS AR [ DB ()% . SR S A, N UIE
V5 SE AR B AL T By, DR PR J5T 43 4 58 B S T 48 R
fii v %27,

2 AfFHRabEEKIINEE

WA Rab 812 25 45 8] 1015 2 1%
W G HEIRAN G B I 5 2 AR A IR

2.1 ‘ApERIEIRYE BfRiE

MRAE N IEDIRE, PRI L3V 4 M A s Ha i
SO PR E B384, BIAEYDE B2 WA 38 47 A [
fRISAE - ATE AL P R R SRR 23 Wh
FEIRURLA B J5 2 B AR DRI AR« g
H R BRI P PR R B AR 2 % *Y. EAh, Rab &
HitRe 57 515 (n3h HE AR E A ) HKFE
WA TGNV R IEI R, O FE RO T kS 2
BRI Esis i R4, HAARKIA Rab AW
VIR B I MR AR R s R sh P Bl .
Rab5-Rab11 GTP g i 15 v 5 A6 25 N A4 1) 52 4 ia
By, X — IR YUE AN IS 5 I A N 1 S
() B PR YT 5 RabS 38 I 1 715 40 i P 4 7 Wk T 0 b
S RN AE, it BRI &R B N
BRI R R E 5428815 B 2 )5, Rabd
5 B AR, K A RS2 AR O I R 2 R A
P B i Rab11 A LU RT A MEA . m/RIEMA. X
R REARM G, RIEBMEBER . B2 &
457 Rab R A/EME Rl 2 5 iz .
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R fih ) S

FERMRRT AR H, R HE K BT MR abS (K 530 7> WE DU RETE Al 22 B A s S UbIRIINY S AT I L 2 7 2 1 AT 2R A /n i 2 e i

Rab5/r TR A 1E 5 AR ASS SR A ARk, HAefE

BiRabs 5 s Bk AWML RS, WEME Emshm. m

FEGMJE ARRS . B2 RabS I ) U 4% 2 J5 S0 B A TTRY M TR M Rab4E RS, TR R EB AR — RS
PP M R I Rab 1 R, e O R A BRI R A R s 55— 2% DU ZE087 (Ml B RabS (236 M Cd B, UL FEI IR I TE

AU TR e T 17z i o

&2 RabZEHEMARMPEITHER

22 RERRIER

Rab5 1 Rab7 ()52 Hrs 1 v] LRy i
W AR A AR B B B R bR, HR B SRR SR
PENLH 2 TP W A0 s 25 (A WA, T 33
T3 B 8 I G R G B, B R B, RabS A
Rab7 & F il i 55 7 W A 2 1) 19 AH B A FH R 52 0 43
BOFF W B, 345 20 BT T AT DA S J8E 4 8 5%
G By, 1 F IR K H 1 Y 2E/NT4E RNA (small
interfering RNA, siRNA) &1k I 2 51, i i 49 K 3
#i (lipid nanoparticles, LNPs) 3 il i Py {4 ' Rab £
HAF I AVRE A E MR, i 20 s B s
SRS, DA SRR 7 AN GH D : LNPs
S22 P N AR B M AR, B 20 NI AR
H T il R 2 i 5 % R T P2 i RNA,  siRNA 2470
I PN A B il A b R R i N BB, A RE SE R RNA
T P R, RN R U S A A B A 3

P R GR N5 Tt 1) 43 1 LI DL & 2 ak i AR,
XTT 25 R A K B HEE SR .
2.3 REHEER

Btk ZARAE 50 FEMRAN X Z40 Ep A
N RIEMEZ AT . G EAMPKZE (G
protein-coupled receptor, GPCR) 1 A 5 K 1) JIF 52 44
Fi, MU ZRIEMMBERZE, ThFe
FhAEF N, B BT, e B o
5NEKESH#HS Y, GPCR fEIRES F 401 A
JIEE X 55 W] [ % 12 52 21 22 B 4 4 Rab GTP g (1) 9 7,
117 1X 25 Rab GTP [ ) ¥ 1 X AT BE 5217 GPCR H L)
fig; HhAh, GPCR FFARMUAN A B I S I8 8 B2 0 50+
HWE A W] BE EL %520 Rab GTP BE ARG . Rk,
GPCR BLVFRERS £ h % B S fE 40 N A R X 2 (8]
() 5E [z s Y. Ak, GPCR £ H RILRGNK R E
A, HhgE O] DAY s H AR S IE 5 SR 5 TR
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M. EERRE, YURERI GPCR B4 P
ik BA R AR L« — 7T, GPCR 7E % Fh4i i
F ik KAk, FARE OB 5 2 AR R g A
T T 9K BB 5 e A0 B SR R RE T, FEN T
YRR BRI b 52 A P A 7 A P R N4
7T, XA R I% T BB FF SR 4ERE GPCR 1)
WIRE S H S, BE LUK ARG S %,

Toll #5244 (Toll-like receptors, TLRs) &40 K%
£ RGN B RGH 5Y,  Be B8 IR 0 R A AH O R 9
Ji 53 T8 (PAMPs) 552 41 BB F3U I 45473 AH O 23 1
B30 (DAMPs), LR 5 Pl v 2 ¥ i 5 R 30,
Rab & 4% TLRs A PA 4 (1) 20 it JIE (1 A7 B4 0 72
YERFZAR I BUBNE,  7E S S WO R B AE H
4 . 7E Toll #5244 -2 (TLR2) Bt 4K Pam3 CSK
Fil3 T, Rab8 l Rabll GTP BEfE /% -6 % S it
T R EEEAE R ¢ X428 Rab 25 (4 5548 211G 31 A1
TR M, LUK T A s 5
iR, 5 TLR2 15 5 8 5 83k RN F (1
MyD88. TRAM Al TAK1) 3t [ #4iz W, 4k, 7£
RUEIE M R, ) Rabs 5 Rabll 7] & 3% 7%
A8 A I 41 R 9 LR R ) 4 S P 8 E AR
S B PR 2 i, [ B TR 3 1T 200 e AL 400 i e S 4
TR 40 B 7 8 B INK.. Toll /% Ras/EGFR {5 5
@E% [46]0

3 AfFPRabEBEREREPRIEEER

RS EAMME R EER T, AER
i) Rab A X E KA EEMRIEIRE. XLk
GTP g {E N4 N B is i)« FIF%”, @it
FEHA T AR W NI TE R 185, Rk
HERE, MR R AR B H AR .
EAERME, WERRFENMUS 518 A7
(R AR 5 G g% N B, (R AT R4 75
I A8 G2 2R 48 R R B 5, 2 I A
UESE,  AS[RIFJE 099 25 T 0 2514 R F AN [F] ) Rab
RAR A G, A0k RS HER R
PR I P Ak DL R A P AR S5 AN ] [X % H Rab 5
P %55 975 3 B G R VR 5 A F ML
3.1 RHAA{RFHRabZE B X HEEEEER

FHIN AR N FRE BN, TEZ
Rab4. Rab5 M EEAl %54 H A, £ &G
TR R CRAEA . WFFRI, Z Rl hRE
FHINAA ) Rab EEH, RPHEFERINE. B85
Sl B, SARS-CoV-2 # #fi Rabs & M 2 59k

B A HI 0 M 23 0T K, Rab5 2% A $2 4 IR 45 R
I 5% % 5 11 NSP6 K COP-1 & &4 4> COPBI1
FIfEF, 2309 8 RNA 14 &5 & *. HCoV-
229 JER YL X A B 0 T 10 N B ENGE R,
il 5 5 bR B EEAL SEEfr, FIH Ak
BAFUE pH BT 5E o B AR Y I H TR,
Rab5 & [7E NNV B4 Hdnt 590 84K 7% 85 A B
B, Z5MEESHSRERERE, SR
IR I B R P 7 B2, Ak, Rab5 Fll Rab7 7£
HAREE (10 SaVv A FMDV) et g5 iy &4,
B Rab £ 05 25 16 P A0 RD B N s i F B A
T RE. 3R 1 F14E T BN K Rab & HTENR
B RIERIAEER, IS S5RHENN
TE5RNIEH, RIS U (kR R
AR AR 2, R e IR R
IEAh, R Rab 2 [ (1R FH SR H B 2 R 64
AN [F) 95 B AT ) 1 FH AR 2 119 Rab SR A 7 PA5E il L
ST A o X 22 M e e HA 97 B AE HEAL R R R
BT XA 2 A R G R S B R SR
3.2 BREAR{RHRabEEXIHFSHIRITIER
TERREENR G AR B, s 2 ks 2 id it Y
IZ BB L BN X . TEIX— B,
Rab7. Rab9 %58 AP R ¥E R EZAEH . efE
AP B B PN AR P RGP I 02, R TIRL T BERIORE (1)
UNENE = IV Y RN I SN i)
PR HIRE. B, SARS-CoV-2 il it H A
T ORF3a 1 [ #0% Rab7, MM B W7 P 75 15 B4 1)
T AR 3 3 R Y. M, HPV R Gt
FE I 52 ] Rab9a ¥/ %, GTP 4544 RabYa
0 HPV #EA A%, 1 GDP 454 45 (1) Rab9a U
TEHEHRZ @), b4k, Rab7 £ Rab9 7E HBV. HCV.
HCMV 4§ 2 P B 1) 86 Gy it A% v 0 5 15 545 DG B AR
F 0T, 2% 2 28 T — L BA Y AR R Rab 2R 1 LE S
BRI E R . EE RN, Rab AW
BURAS, B LRI, e 8B et
FErpte s EE R IREEM . #lin, HCMV YL
YIS, B 0E] PTEN 3% 7 5 8 Rab7 40 T 5 iR
PR, 328117 FELA 55 1A P A 21 166 11 P A 1R R, 591
595 B BURL £ B0 TGN FE B P9 4R 3147 I A e ©Y,
DL BT 45 SRR W], Rab 25 1A 75 B 1] A 44 v x5 25
(R E B A R A e b . XIS LA
1 J Rab & H B E 1210, & 5H M I H
T BRGIRAR DR AR B e S DA DG . Rk
WA DAE— B R R Rab 25 459 & 2 (8] (A0 B.AE
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=1 RHEIR{AFRabE B RSP REIEER
ks Rabf [ Ihik EE PN
AcMNPV Rabl. Rab4.  AcMNPVBVs{K VT RabS M 15310 N AR #EAT N AL FIRab 1 IR FEER )44 [55, 56]
Rab5fiRabll  #HATHLEE; Hh4h, AcMNPVIEH H GP64K i Rabl FRab4 18 i T ALK
T BRI
SARS-CoV-2  Rab5 SARS-CoV-2/##iRab5 %5 12 5 ¥ L H AN fu 23 1/, RabSilid 2 fLpssf  [50]
I 599 5 55 FANSP6 L COP-12 & )41 /- COPB U FI/E A, (R FERNANI & R
55|
SaVv Rab5fIRab7 SaVEYL I i R B %5 445 K (H Occludin, IS5 ER TR E S, JH@EET  [53]
Rab5 1 Rab7 #1412 iy 77 22 NEHT P4, AT R 3305 253 J4E A\ A e
HCoV-229E EEALI HCoV-229B AR MM B A/ S B EFTEE NGB, Hdd 5 BRI A Fs  [51]
HEWEEALIL AL, R AR AR K pHPR 5% 78 B 2 12
HBV Rab5B i )8 Rab5B 5 HUF A ML % F T HNF4ofs S i) ALK OB R R (ITEN IR [47]
WAL, S Dane R RERIY N, R IHRab5SBEHBVIH BRI - ) S HE
TE R
FMDV Rab5. Rab7 ~ FMDVidid M & A A1/ 5 8 AN S N B #EACHO-677T41 /1, JF Haz A [54]
121 PRI Rab5 FIRab 71 2 5
HIV-1 Rab5. Rab7.  HIV-1 BJ4HBIEE FINefss (I 7 5 MR 1E L4 £ FiRab GTPaseff1RiL&,  [57]
Rabll 1 b Rab5HIRab7# 1. FiRabl185 [, {2idkfE FHis 55 5 I SERINCS A 4H
LTI 6 3 2 T A s P R T AR, AT S0 5 6 T G 2 375 I 5 8 9 753 A2 1
PEAV Rab5. Rab7. PEAVIEYLKHI T L F N FiREU/NE « WA E AR B AR ADBEALIR, I [58]
Rab9 JBidRab5. Rab7HIRabISH £y [ 42095 7 W I N AR [r) W B A TR i ey, AT 3
7 5 D] 2L R TSR
EV-A71 Rab5s EV-A71 7 ZAK i Rac LA T 1) P 7 /B H A HiRab S 1) 201 fid PR 32 ok ke <7 Jak [59]
CVAI10 Rab5s CVALO Z A FFRac LA 5 1 P 7 /B F A f5iRabS ) A P 12 ok 22 7 ke [59]
PDCoV Rab5. Rab7  Rab5 il Rab7 J& PDCoV AT FH LA Ji 645 UL i b 75 1) [60]
CSFV Rab5, Rab7  Rab5Y CSFV (1] NS4B HAMEAEH, @i {ed NS4B &Mk R [61]
CSFV &l
PHEV Rab5 PHEV & JLAi] 5 M i 78 85 UK LR 0%, fiiBR o Rabs GTPaseli E IEH 1 [62]
#l, SFRab5Id EEIE AL, (753 5 NGE/TrkA P44 TG 1F 5 AR 385, AT
FEASHH 22 el 228 K IR S A IR 1T MR AR
NNV Rab5 Rab5 8 HAENNVIE Gl 5 #i A 5e il A EAER, S25WEERNEE  [52]
R, R R VAR AR I SR R R
MSRV Rab5. Rab7  MSRVLUMKpH. FAEMA. . RabSHIRab7H MR 7 B MR EAN S  [63]

O P G T S, A B0 A I S B0
B 4

FAMLH], FEEHX el B AE I R B PR s 2.
3.3 R AR RabE B XHRERIEIEIER

H, Rab8 it 5 ALIX 45 &,

51 5995 53 FURL 8 iof
TGN #ATiE%, FH7E KifdA (135 T IKEhix Lo 5

PEIR N ARAE N AR 2R G0 0 — A BB G 7
W5 TR REGeE R, WFRRE, R ES
Ji 8 (West Nile virus, WNV) &4 \ JE 2 BEAH i J8
YA ) A2, Rab8 5 WNV LR AFAE I E AL I A,
H WNV gL 2 2% 18 55 1 Rab8 £ 41 Jiil T (1) R 15
A, Rab8b 25 T WNV FkL M A A A% 1) 41 g
R Z 4, MR R SR K R U FE B

I 9% 7 (classical swine fever virus, CSFV) Ji& 4L it F&

IR M RIS, B 2R3 55 1Y) 2 FURE
U, R AR 9 # (Marburg virus, MARV) £ [
Rab11 /1 5 1 3% 033 4 14 12 R A a3E 3 B A UKL (1)
BCAAURETE, X — i RO T8 X 4%+ 1T I AT )
HFEY, Rabll 25 [ EHTE (Ebola virus,
EBOV) Bk A il U . RN IE A 097 3 (respiratory
syncytial virus, RSV) 18 it #}j £ Rabl1a /i 5 ) £ 1
BB S IUR AL B AR R S, T (R
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R2 BEIAA P RabE B ERSRRPHIEIIER

i Rab%& Iifg EEPUN

SARS-CoV-2  Rab7 SARS-CoV-2idid H 5 /) A TORF3aid FE & Rab7, FHT A FFIETHARIER, T [64]
PR B A K AR RE I, THIR N B R

HPV Rab7. Rab%9a {EHPVIRYLIFE, GTPL: & A MIRab9aHIHPVEEANAMIAZ, MGDPLEEAM  [65]

Rab9allll i it JL3E N ; Rabaithiof iff 1THPV 5 18 4% 5 2 & W KA ELAF F 3200 7
MA BRI 5, T HiZis i A S S KiRab T 2 5

HBV Rab9 Rab9-5 [ W 52 ANDPS2 R 75 G B (TR RUE &4, (e dt G i i i i [65, 69, 71]

HEATFEME, T HBY R IEHUR EE4E
Rab7 HBV[#14% 0 B 8T B S Rab7 S 30A B A ThRe e, ikl 00 5 w3 gl [66]

SRR AN PR T, 3T R 3 T e A A R 97 A

HCV Rab7 HCV & Yy i 24 Rab7 (12508 8 (IRILPSR SUR AN 1 IZ B, K EA N iz [67]
%MMM%@%%%%EEﬁ%m%mtm,Mmﬁﬁfﬁ%ﬁmﬁw

HCMV Rab7 HCMV L Az b, @R PHPTENYG M 5 8Rab7 40 F BERR IR, BHASH.  [68]
%WW@%%W%%&%,%ﬁ%ﬁa%ﬁ%mﬂmﬁﬁHW%ﬁﬁM@ﬁ,
DA 3 A 285k

CSFV Rab7. Rab9 Rab7MIRab9% 5CSFVIEL MK E AN FHIWEIEHBEANE SR, = [72]
5 Tsg 10V LA F I ir Bls 3 A IA A 4 12 5 22 v g

SVV Rab5. Rab7  SVV i f&K#i T pH {H. &3hE A Rab5 fl Rab7H)/ N AN FIINFIER  [73]
AE g\ PK-15 4

TAV Rab7 IAV M2&E H 5TBCIDS KA EAE, FHIBITBCIDS 5Rab7(I45 4, #H#|Rab7  [74]
PR S B VA B R R, (R dE 0 53 1) H 2 R

WSSV Rab9 Rab97f M 4N A S i R IA, JIEARabY FEWSSVE H I, #t—P ke [75]

Rab9it i i 17 A WA TWSSVAE

973 B UKL () AL AR T b AN, Rablla JERR S (1) 3 B DD A6 2 Ur B9 25 0K AR 4125, X
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