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Advancements and challenges in de-extinction technologies
LIN Jian-Qing*, LU Wen-Tao, LONG Xin-Rui

(Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Institute of Marine Science/

Department of Biology, College of Science, Shantou University, Shantou 515063, China)

Abstract: De-extinction refers to the concept of creating a proxy species that functions as an equivalent to an
extinct species, capable of restoring ecological functions or processes lost due to the extinction of the original
species. There are three categories of de-extinction technologies: back-breeding, cloning, and genome engineering.
In reality, none of these three methods can fully recreate individuals identical to the extinct species, and the
feasibility and necessity of de-extinction projects remain highly controversial. This review provides a
comprehensive analysis of the principles, applications, historical development, technical advantages, and limitations
of de-extinction technologies. By highlighting the attention on species revival efforts, it aims to raise public
awareness about biodiversity conservation. Furthermore, it underscores the potential of advancing technologies in
de-extinction to bring renewed well-being for both humanity and natural ecosystems.
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KILRIERZAARIRI, WERET KRR
B 5 S8 B STk N HEnE B HARAH OGS 2 a0t [
B S K LA RIE FE R AR B B 24

RKF KRR BOK UL SRR
e 2E M IR T 5 S R, TERERAE AR N IR )
HEWA. SR, KL O ) AE I BR AR (7]
FERREE, F AR LSS, GHm
BARTNEAAAERZEER . BT, FERROKA T 2%
BR=F . RIAEE. CENERmSE. A30K R
G R IX =R ROR M REA R Fopridt g, RER A
L LA 261, DAWPNH SR e i 5%

1 REES

XM E (back-breeding) it £ B A 5 K4
VIR AR LN I EAT R RRAE A, AT — KRB K
TEEE, M EF IR RE 2 A 7 LRE R A
e 1T 5 DL SR A R MR DLRE B BT PR Y
FEIAL, I H AR A AR IR A
S B H i E AR R R A (Bos primi-
genius) R LK. R4 R BRI EEE
Mz —, VAFHE KRR 18575 i P&
DA ) PR A 2 R B R AR KA (Bos taurus)
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WS AIR, B A SR A 16 20 A7 36 B8 8 4 /N 2 2R R
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RN 1627 SN RAE R, BN — DN KD
TESMH K b 2,
TENRI S IR IRAE, RECE KL, R
TE BRI SCAL AT AR B A BRI i) s 7y . AR 19
200), VPR A T - IS - BRI (Feliks
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fHgsEE . BEE 19 el 20 4248, 18w R sh 4 b
() el K96 IR 2% - 6 57, (Heinz Heck) A5 7% - i 2 (Lutz
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ZABESEEFMIE MY ES), B “38%
WH” “4mE 44 W I H (Taurus)” “faf 2= 4 4 JHE T
H (Taurus)” %5, 1X 26T H 3 B 7R 5 7 4 1 244l E
AT R, BRI A A B g SR AR R B AR A, L
HIVE LR RE Y, BhAh, BEY (Equus quagga)
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NSRBI X 0 % E SIS B s U,
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FEEE 3R H O K ZatH S Bl R 30 4 R B AT N
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3 EREETRE

425 T & DNA (ancient DNA) $5 A FI13E K] 4 5
(genome editing) £ AR K e, FEDIZH TREHEAR
O RN R 28 F FL A 38 P A e 2 R B T k2 —
BE & T DNA $& BRI 7 B R B8, K484 Fi
B R IR L LS B OO AT RE .l I 15
B 75 5 SR 500 R s (I AF ) P 2 2 SE DR 4 3
ATEEXF, AR E R 4V 5 I AE Y A AR R 4H 2
(BP9 22 o BB S, R FH 2 DR 20 20 B AR THLAF
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P K L IR R IE 4. B JE, 45
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I FH 2 DR AH TR AT S K 4B 0 25— 0 3R BUK
AP E R ESOR, st E, R
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2> B 5 I B HE RS I BoAb A oK s B f . B &
DNA $2HL. @ S 7 HoR a8, k2 K
S Fh S R AL BAF LU, plids g B R
4 B ASH (Thylacinus cynocephalus)®” . 5040 i
(Rattus macleari)m]\ TEVE S (Raphus cucullatus)[”] PL
Je i 78 (Ectopistes migratorius)*” . DNA [¥] [ fift i
R SRR BB VI, =& FE X )
FER AR T DNA IORAT, 170 i Wz 3 1 ) P 55
MIASF] T DNA K HAGRTE. BT, &g i DNA
Fr BACSEoRk Bk R 22 540 200 HEERTIIREA Y, i
el AR R H NS — SR ARG T2 165 T34
PEAE R X S & ¥, Rk, T DNA A&
FIRTBEYER /N, % 6 600 J34E R Ok 4 2y )
(AT RE PRSP LA

R A AT DLigE ik AN g 20 (R R T B K e pp
AT R M E, AT E )y B i &, ELL
RISKFH B, DRIGAR M B4R B 7 1y 5 34T
ML 2 (de novo assembly) DL HE 4 52 B [ JE (K 4
— M AT R X T R B A b 2T
G ZHEIL R b, T E B R 2 5
X7 Re e B ) R VAL L B T2 B M 5
R A Fh 2 1) f BE AL BE B, 1 f, Lin 5 Y %)
1900—1902 SR AT FIEEVE 25 UE 5 1) 22 Se AL B (1%
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M R (Rattus norvegicus) (NS % 3K H . R
WP IRFEIR R T 68X, H T3 i Fh K B 7E 230
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2L 17 2 D] 26 9 48 B R TG 56 A e 1) 1) R, B B
(P, RUSHE AR B AT DU AT AL i A B 1247 PR
RAERA R e, G b RS D5 R PR 2 R B i
Wi R e PR S AT R A — AN AR S HL U B K ) 11
R, [R] I R T K AR T 5 0 AT R
HEHL

BRI, AT — NN SE A T R, BE
5 R AP IRPEIRAR R B TR R, IR x
AT Ym R s o AR TR (RS B AR ARG
i KA AER] 70 ) B George Church 4] BA IE 78 K H
X — SRR NG A AS R R RRAE,  H bR G 1E —Fb
MEKEKR NEZE 7025 TR B i € R
IS %R - WM R B &4k, F7E 2015 4, Church
1 A { ] il CRISPR-Cas9 1 A M 31 5 48 g Hh (1
14 IR AT T okt ™, XN AT RS B R AR
FEFN AT 8 F I BEGRRE A OG, Hp e E AR 2
B SIGAE SE—— DS 5 DNA REAR A i 2L (R 1
S YA ) I 4T 8 (AR AR IR AR 1E g I AR B
B )5, Church Bt 7% A BAJd i 4k 5 15 5 355 75 2 F U8
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Lin28), [AIWf 0] pS3 i, RN E 17 &
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A Z LR I ORTE 5 BeAh, 12 SRCOKZAEWT T
AR ANWR IR T, WO RO LK
PR AL B 2 PR, ity DNA I PP B AR K 1 4
G, DIIRECE SE % B 0 A R (K K W) R 3 ]
HHGHR 5 2 DR e 0 R UK S T 2 4k RS HE L o5
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