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Abstract: Cohort studies serve as a cornerstone of modern medical research, enabling mechanistic insights into

disease etiology and risk prediction. Advances in high-throughput technologies have positioned multi-omics cohort
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studies as indispensable tools for elucidating the pathogenesis of complex diseases. The emergence of large

language models (LLMs) and multimodal architectures now unlocks novel capabilities for handling cohort data

complexities, including longitudinal trajectory modeling, imputation of missing entries, and cross-modal integration.

This review systematically evaluates pivotal applications of large models in three landmark cohorts—the UK

Biobank, All of Us, and China Kadoorie Biobank (CKB)—demonstrating their transformative impact in

transitioning cohort research from correlative analysis to causal inference. We present a methodological framework

integrating cutting-edge innovations, practical implementation scenarios, and solutions to technical challenges. Our

analysis highlights the potential of Al-driven cohort studies to revolutionize precision medicine and public health

decision-making through mechanistic interpretability and actionable biomarker discovery.

Key words: large models; multi-omics; cohort studies; disease prediction; precision medicine; causal inference;

artificial intelligence

1 38§

1.1 BASURRRBIA AT KM

BA BB 75 A2 SR A T 2 B W R 7 1 S b 17,
REAE HT AT kb 2\ e W 5% e — o IR A2 KR e 3
TE BB, HT LB B B R R 2 A
b TR T A 9, A BT e o %k I ) )
G BLREAT EE, BAAA T B iR - 45 R AENT,
AR T IR R Y, N AR BT
BV AN 24 2 BAFIFIRFEA R (N>10 000)-
Z I} [A) S R DA RCR B Z 25 = K B, i1 2
YRR A T LIR U b 2 BB (1 7 7 Ak, AT bA
AR b Jsz W BB R 32 RSt AL 15 S 2 AT AH AR A
1E R4 M 2 H 2B\ %) 2 —, UK Biobank 24
S T 50 s 5#E MR Z E X
HEER, NEMHRHLEIRF IR T BT a D
(E 1. 2).
12 KIEBRSAFIMRNEE R

KA PO R e 25 A FIT e ok 1 a0 4
fpLe 7, FEAFELLR =AW : Bk, S
BF 7072 A ) K B AR S5 M A BT 75 L 25 6 SR R AR Y

biobank

ZRASAERE /), KBRS TGS 2 T EE W
T SCRAEM S BESBRARRE /7, AT DA R FE R0 |
B2 5 s . 79 ) (electronic medical record,
EMR) 04 25 22 Y50 we i 31 [A) — 18 S ) v B,
BRIT M2 FRIFEE A B RS 7. HIR,
A Z i () ) [8) 3h 25 e 1t 5 0% T 3 B TP
Transformer 42 F4 A& 2 ', v DU B 3 & /1L
IR 1) 57 25 20 i SI B AN A D) SR A T o PR
BRSO E, AR R OGO R M
Jei s N ZH 5 5 1 43 A AR Y SR AIE 2 ST g J1 RN 36
KR E R IIESR, Befg A LR N 72 120
gk, AR B AL PR AR PR R BAS [F] 1)
P AL 1
1.3 ZRRHEZRBIFh

KT BABBIF I 5o B AR ) KA A N G138, AE
NESCHE SR B 30 B i o 4 o) ) A A W R . FH 45
JrTZE T KA B AR R R BE A K, ] 3 oo
e A o E T T = A BAAARRMERIBAA
UK Biobank™ [H &5 KEIIFAZ . SE R HHE 2%
MR 246 5 ALl of Us'™ Ry 550 2 Rk, £3%
s o RIS TR PR AP T (CKB)™M AT X6 W 9

Browse by Primary Category of Origin

Category Items
+ 3 Population characteristics 39
# (1 UK Biobank Assessment Centre 3450 _
+ ) Biological samples 466
%3 Genomics 93
s Online follow-up 820
+ ) Additional exposures 227
%) Health-related outcomes 2475

[E|1 UK Biobankgy#iEHF



1636

At

ERVES
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Category: Blood biochemistry - Blood assays - Assay results - Biological samples

Participants| 449,953 Value Type|Continuous, nmol/L Sexed |Both sexes Debut ]May 2018
Item count | 465,389 Item Type |Data Instances Deflned (2) VersmnIJun 2018
Stability  |Accruing Strata Primary Array

I Data I 2 Instances I Notes I 5 Categories I 0 Related Data-Fields I 0 Tabulations | 2 Resources _
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Units of measurement are nmol/L.
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