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大模型驱动的多组学队列数据整合与疾病预测
王道洋1,2，胡建颖2，宁雪丽2，李　慧2，韩武君2，刘玉琳2，谭诗尚2，方金武1,2*
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摘　要：队列研究作为现代医学研究的基础，在疾病的机理探寻及健康的风险预测中发挥着重要作用。在

高通量技术飞速发展的背景下，对于诸多复杂疾病而言，多组学队列研究是现阶段揭示其发生发展机制最

有效的研究方法之一。随着大规模语言模型 (LLM) 和多模态大模型的快速兴起，处理队列研究中的复杂数

据有了新的可能，如在时间序列建模、缺失数据处理和跨模态数据整合和分析方面都可由该类模型实现。

本综述对 UK Biobank、All of Us 和中国慢性病前瞻性研究三大典型队列中大模型应用的关键案例进行了全

面总结，将队列研究从“相关性发现”阶段推向“因果推断”阶段。本文梳理了前沿的方法学创新、典型

的使用场景以及可能遇到的挑战与应对方案，为大模型驱动的多组学队列研究提供了一个系统性框架，探

讨了目前存在的主要问题以及后续发展的路径，对推动精准医学和公共卫生等领域的科学决策具有重要意义。
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Abstract: Cohort studies serve as a cornerstone of modern medical research, enabling mechanistic insights into 
disease etiology and risk prediction. Advances in high-throughput technologies have positioned multi-omics cohort 
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studies as indispensable tools for elucidating the pathogenesis of complex diseases. The emergence of large 
language models (LLMs) and multimodal architectures now unlocks novel capabilities for handling cohort data 
complexities, including longitudinal trajectory modeling, imputation of missing entries, and cross-modal integration. 
This review systematically evaluates pivotal applications of large models in three landmark cohorts—the UK 
Biobank, All of Us, and China Kadoorie Biobank (CKB)—demonstrating their transformative impact in 
transitioning cohort research from correlative analysis to causal inference. We present a methodological framework 
integrating cutting-edge innovations, practical implementation scenarios, and solutions to technical challenges. Our 
analysis highlights the potential of AI-driven cohort studies to revolutionize precision medicine and public health 
decision-making through mechanistic interpretability and actionable biomarker discovery.
Key words: large models; multi-omics; cohort studies; disease prediction; precision medicine; causal inference; 
artificial intelligence

1　引言

1.1　队列研究的不可替代性

队列研究是流行病学及临床研究的金标准 [1, 2]，

能够前瞻性地、纵向观察某一种疾病从发生发展到

预后的整个过程，且可以追踪暴露因素的影响；相

比于横断面研究，队列研究通过对人群随时间的变

化情况进行观察，明确了暴露 - 结果的发生顺序，

更好地证明了因果关系 [3]，应用此类方法更有助于

客观评价相关性。多组学队列的大样本量 (N>10 000)、
多时间点采样以及表型刻画等三大特点 [4]，使得多

维数据集可以很好地发现疾病的分子基础，也可以

很好地反映环境因素和遗传背景之间的相互作用。

作为经典的多组学队列之一，UK Biobank 至今已

经收集了超过 50 万位参与者的完整表型和多层次

组学信息，为慢性病机制研究提供了更好的平台 [5]

( 图 1、2)。
1.2　大模型与队列研究的契合点

大模型的快速发展给队列研究带来了范式变革

的机会 [6, 7]，主要包括以下三个方面：首先，队列

研究产生的大量非结构化数据需要综合应用大模型

多模态处理能力，大模型通过预训练学到了丰富的

语义表征和跨模态理解能力，可以把临床指标数据、

医学影像数据、电子病历 (electronic medical record, 
EMR) 数据等多源数据映射到同一语义空间中 [8, 9]，

有利于从多种来源整合信息开展队列研究。其次，

队列数据的时间动态属性与基于自注意力机制的

Transformer 架构相适应 [10]，可以通过自注意力机

制和时间位置编码实现不规则采样间隔下的长距离

上下文交互，兼顾各种尺度的时间关联关系 [11]。最

后，人群亚组异质性分析对模型表征学习能力和聚

类能力有着较高的要求，能够发现数据内在的亚组

结构，识别出具有相似分子特征但临床表现不同的

疾病亚型 [12]。

1.3　综述框架创新

关于队列研究完整流程的大模型应用创新，在

从数据采集到数据质量控制再到建模及临床应用等

方面给出了大模型的整体技术路线图，如图 3 所示。

在此基础上着重分析了三个具有代表性的队列：

UK Biobank[5] 因含有大量的影像学、基因组数据等

而被广泛使用；All of Us[13] 特别强调多民族、多场

景；中国慢性病前瞻性研究 (CKB)[14] 则针对亚洲人

图1  UK Biobank的数据目录
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群特有的疾病危险因素。通过对以上三个队列的剖

析 ( 表 1)，不仅能体现大模型应用于不同环境下的

优势，同时也可以看出其在不同文化中的普适性。

2　队列多组学数据特性与挑战

2.1　数据特征

队列多组学数据具有自身的维度特征和时序特

征 ( 图 4)。从维度上看：高通量组学数据具有高维

稀疏性 (pn) 的特点，传统统计方法难以直接处理；

临床指标则具有相对低维稠密性的特点。从时间上

看：队列很少能够做到规律的随访采样，形成不规

图2  UK Biobank的数据域及队列信息

图3  整体性技术路线图

图4  队列多组学数据的特点
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则的时间序列；不同组学的采集频率与时序分辨率

差异较大。不同组学之间代表的是生物系统从基因

到表型的不同层面，在不同水平上反映了生物体不

同层次的调控网络和调控机制，相互之间可以互相

补充和印证。这种异质性带来数据整合挑战，大模型

的表征学习能力为克服这一难题提供了新可能
[15, 16]。

2.2　质量控制关键点

批次效应及缺失数据处理是队列研究质量控制

的两个难点。批次效应来源于样本采集、处理平台、

操作人员的不同，有可能掩盖真实生物信号。大模

型利用自监督学习 [17] 可以发现数据中存在的潜在

规律，从而能区分技术变异和生物变异。对于缺失

数据来说，队列研究随访脱落带有偏倚性，是非随

机缺失。生成对抗网络 (GANs)[18] 和变分自编码器

(VAEs) 等生成模型可以学习数据分布特性，用生成

模型自动生成与真实数据一致的样本来补齐缺失

值，这样能更好地保留各变量之间的复杂关系。

2.3　伦理与隐私考量

随着队列研究的增多，队列研究中涉及伦理和

隐私的问题会更加突出，特别是动态知情同意和跨

中心的数据共享的问题。动态知情同意允许参与者

通过数字平台实时查看数据使用情况并调整授权范

围，All of Us 研究计划 [13] 率先采用了这一模式。

对于跨中心的数据共享，联邦学习 [19, 20] 使得原始

数据可保存在各个机构，仅向各个机构传递模型参

数，与差分隐私 [21] 和同态加密等技术结合，在保

障隐私安全的同时也可以实现协同分析的目的。

基于 Transformer 的联邦框架将模型性能损失

控制在 3% 以内，同时满足各中心的隐私约束。值

得注意的是，差分隐私 [21] 的引入需要权衡隐私保

护强度与研究结果的统计效力，在慢性病预测任务

中，ε=5 时的 ROC-AUC 下降 3.2%，而 ε=10 时可

控制在 1.5% 以内，提示需要针对不同研究问题开

展参数优化研究。

大模型应用给多中心队列研究带来了更加明显

的伦理与隐私缺陷，比如：虽然 All of Us 项目 [13]

通过开发的电子同意平台并借助区块链技术完成了

同意的状态实时更新、全程可溯源的工作，相比以

往传统流程降低了 21% 的撤回率，但是在面临多

模态数据的场景下，出现了一些新问题。其中最重

要的两个问题：一是在二次使用生物样本的过程中

可能会存在一些组学的衍生数据的所有权问题；二

是因为影像数据存在匿名化不够完全 ( 如体态特征

的重识别风险 ) 的风险，故都迫切需要提出新的方

法来解决此类问题。另一个突出的难点是多个中心

间数据共享过程中隐私保护以及算法在各个平台上

的同步运行的问题，即面临着如何做到跨平台数据

同构的问题。对此，现有联邦学习框架在协同训练

过程中实现了分层架构上的优化 [19]。在 UK Biobank
和 BioMe 两平台间的联合研究任务中，通过设计动

态参数聚合策略区分组学特征的全局共享与临床特

征的本地保留，基于 Transformer 的联邦框架能够

实现整体模型准确率下降在 3% 内的效果，同时满

足各中心的隐私约束。值得注意的是，差分隐私 [21]

的引入需要权衡隐私保护强度与研究结果的统计效

力。在慢性病预测任务中，ε=5 时的 ROC-AUC 下

降 3.2%，而 ε=10 时可控制在 1.5% 以内，提示需

要开展针对不同研究问题的参数优化研究。

对于深度隐私保护而言，同态加密等新技术为

基因组 - 表型相关分析提供可能。CKB 项目利用加

法和乘法密文操作，在保证 χ² 检验误差控制在 1e-6
水平 [22]，成功实现了全基因组关联研究 (GWAS) 的
安全外包计算。但这种技术带来的计算开销 ( 运行

时间增加 50~100 倍 ) 并不适合大范围推广。目前，

生物医学领域数据尤其是生物医学文本数据隐私问

题还未得到足够重视，NLP 模型对 EHR 数据的细

表1  代表性大型队列研究的特点比较

特征	 UK Biobank	 All of Us	 中国慢性病前瞻性研究

样本规模	 ~500 000	 目标>1 000 000	 ~500 000
地理覆盖	 英国	 美国(强调多样性)	 中国(10个地区)
建立时间	 2006年	 2018年	 2004年
数据特色	 丰富的影像学、基因组数据	 多样性人群、EHR整合、参与者参与	 亚洲人群、生活方式、慢性

	 	 	   病风险

随访策略	 定期随访+健康记录链接	 持续参与模式+EHR链接	 定期随访+死因登记链接

组学数据类型	 基因组、代谢组、蛋白质组、影像组	 基因组、代谢组、微生物组	 基因组、代谢组

大模型应用重点	 影像组学、多组学整合	 健康不平等、多样性人群风险预测	 代谢性疾病、环境-基因交互
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粒度重建实验表明，仅用住院时长、实验室检验项

目等结构化字段，即可推断患者身份信息 ( 准确度

达 72%)，这要求开发文本解缠表示技术以分离临

床语义特征和潜在身份标识符。

3　大模型在队列研究中的方法学创新

3.1　时间感知的建模架构

Transformer 架构 [10] 利用自注意力机制来克服

RNN 处理长序列梯度消失的问题，非常适合处理

队列研究中的长周期随访数据。时间位置编码 [11]

是改造 Transformer 处理队列数据的关键创新，直

接将绝对时间信息编码到模型中，使模型能感知事

件的确切时间点和间隔。记忆增强网络通过显式外

部记忆模块补充了注意力机制，能够存储历史观测

中的关键信息。例如，在 UK Biobank 的心血管疾病

预测研究中，时间感知 Transformer 模型通过精细

的时间编码，整合了不同时间点的多源数据，显著

提高了预测性能 [11]。此外，基于 Transformer 的因

果推断框架能更准确地估计动态处理效应，区分直

接效应和中间生物标志物介导的间接效应 [23]。

Transformer 架构在多时间点队列数据分析中

的优势已得到充分证实，但其对不规则间隔时间序

列的处理仍存挑战。最新研究提出将离散时间编码

扩展为两种互补机制 [11] ：基于 Weibull 分布的时间

间隔嵌入方法可以捕获随访间期的变化模式，联合

周期基函数用于提取周期性 / 生理周期 ( 如昼夜及

节气 ) 信息。在 UK Biobank 心血管疾病预测中的

混合编码可以使得预测能力提高约 6 个百分点。时

间动态建模的另一个进展是多尺度注意力机制：采

用分层次构建一系列分层的 Transformer 以不同比

例的周、月、年建立本地化注意力窗口，以观测内

部的信息，而跨越尺度链接能够捕捉长程依赖关系。

这种方法显著提高了糖尿病视网膜病变进展预测中

微血管变化的早期识别能力。

在处理多组学时序数据时，记忆增强网络具有

独特优势。例如，当存储模块经过训练掌握组学指

标间的动力学规律后，它可以利用学到的知识推测

未知时间点的生物标记物插补值，且结果更符合真

实情况。本文对 CKB 代谢组数据的测试表明，该

方法使 1 年间隔外的外推预测误差降低 31%。在因

果推断方面，基于结构因果模型的变体 Transformer 
(SCM-Transformer) 通过显式建模组学时序变量间

的因果关系约束，在识别疾病进展驱动因素方面的

特异性比传统方法提升 18%。这种架构通过可微 D

分离算法自动识别混杂路径 [23]，为高维组学数据的

因果发现提供了新工具。

3.2　异质性人群分析技术

基于注意力的亚群发现方法运用了Transformer
的自注意力机制进行无监督分层 [12]，能够自适应性

地为不同的特征分配权重，发掘亚群间极其细微的

差异。在糖尿病队列的研究中，该方法发现具有不

同并发症风险、对不同药物有不同反应的亚群 [12]( 图
5)。大模型驱动的反事实推理框架通过学习高维协

变量空间中的潜在表征，建立更为精准的反事实预

测模型 [23, 24]，尤其适用于评估长期干预的效果；异

质性治疗效应分析借助元学习框架，能够在未指定

亚组的情况下发现异质性模式，并在欧洲多中心糖

尿病队列研究中发现了对药物反应存在明显差异的

亚群 [10]。

异质性分析深度学习方法改变了以往划分亚组

的传统定义方式。基于动态原型网络的方法，每个

样本能依据注意力权重聚合多种原型表征，以更好

地刻画连续谱系式疾病亚型。例如在 NASH 患者的

分层分析中，我们利用该方法发现有 3 个具有差异

纤维化进展风险的亚群，其临床终点预测 C-index
达 0.73，远超传统聚类方法 (0.61)[12]。针对治疗效

果异质性，最新型的反事实平衡表征框架利用对抗

训练来消除协变量和治疗之间的虚假相关，在 All 
of Us 降压药疗效分析中，将处理效应估计偏差从

0.12 降至 0.04 标准差单位。

元学习方法在自动发现异质性模式方面取得

突破。基于 MAML-HTE 框架的元学习方法可以在

不需要分布转移的情况下，利用 HTE 任务中个体

间治疗响应差异的模式来学习，当转移到新队列

时只需要少量样本就可以根据分布差异调整对应的

参数。

3.3　小样本迁移学习策略

预训练 - 微调范式是迁移学习的成功实践，在

队列研究中被广泛应用 [8]。模型首先可以在大规模

公开数据库如 UK Biobank 上预训练，然后用小规

模的地方队列或者是针对一些特殊的疾病亚型微

调，达到改善模型在小样本场景下的效果。通过领

域适应技术可以学习到源域和目标域中均不发生变

化的特征表示，从而实现队列间知识迁移，使得模

型能够适用于其他队列数据。自监督学习 [17] 利用

设计好的辅助任务，从海量无标记的组学数据中学

习有用的表示，因此能够有效利用队列研究中大量

的无标记组学数据。对比学习，通过最大化同一样
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本不同视图表征之间最大化正相关性来学习低维表

示，能在小样本情况下获得优异表现。表 2 归纳了

大模型在队列研究中的方法学创新。

4　临床应用场景

4.1　疾病风险预测

大模型驱动的动态风险评估模型能够追踪个体

的风险变化规律，为临床上找到风险较小时的最恰

当的干预时机 [11, 12]。例如，在糖尿病前期人群研究

中，基于 Transformer 的模型可以同时完成总体风

险预测和风险模式及高危节点的定位问题，相较于

传统的 Cox 模型有大约 15% 的提升。多组学早诊

标志物挖掘通过整合多维数据，识别出疾病的前临

床信号。在阿尔茨海默病研究中，发现了早于疾病

出现 10 年内可以检测到的病发组合早期标志物 [8]，

使得疾病的早诊准确性得到了显著的提升。大模型

还能将总体风险分解为不同组分的贡献，通过注意

力机制和特征归因分析 ( 如 SHAP 值 [27])，为靶向

干预提供精准指导。

4.2　治疗响应预测

在药物基因组学队列研究中，大模型整合了基

因组变异、表达谱、代谢组特征和临床参数等信息，

形成了高精度的个体化剂量预测模型。例如，利用

深度学习模型将华法林剂量预测准确度提高 30%
以上，显著降低了并发症风险 [28]。在肿瘤免疫治疗

预测领域，大模型整合肿瘤微环境的多维信息，显

著提高了预测准确性。在肺癌免疫治疗队列研究中，

多模态大模型将 AUC 提高至 0.85，显著优于传统

图5  糖尿病亚群发现方法

表2  大模型在队列研究中的方法学创新及其应用

创新方向	 关键技术	 传统方法局限	 大模型优势	 代表性应用案例

时间感知建模	 时间位置编码、记忆增强网	 线性混合模型难以捕捉非	 自注意力机制捕捉长距离依	 UK Biobank心血管疾

	   络、时间感知因果推断	     线性时间模式；RNN存	   赖；处理不规则采样间隔；  病风险轨迹预测[11]

	 	   在梯度消失问题	     多尺度时间关系建模	
异质性人群分析	 基于注意力的亚群发现、反	 预定义亚组缺乏灵活性；	 自动发现数据驱动的亚型；	 糖尿病并发症风险

	   事实推理、异质性治疗效	   子组分析统计效力低；	   学习平衡的表征空间；捕	   预测与治疗响应

	   应分析	     难以处理高维交互作用	     捉个体化治疗响应	     分层[12,25]

小样本迁移学习	 预训练-微调范式、跨队列知	稀有表型样本不足；跨队	 利用大规模数据预训练；领	 罕见疾病预测[8]；跨

	   识迁移、自监督学习	     列分布差异；标签稀缺	     域适应技术；从未标记数	   种族风险模型迁移[26]

	 	 	   据学习有意义表征	
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生物标志物 [8]。在药物不良反应监测方面，基于

Transformer 的模型结合纵向健康记录与基因组学数

据，能够准确识别基因型特异性的不良反应模式，

并适应时间延迟效应和累积剂量效应，挖掘一些传

统的不良反应监测方法不易监测到的长期的安全性

信号 [29]。

4.3　公共卫生决策

大模型支持的人群分层干预策略是根据队列数

据的风险分布以及干预的响应模式，确定最受益于

干预的亚群，据此提供更加科学的干预。采用精准

分层策略可在糖尿病预防研究中提高可预防病例的

比例约 40%。同时，集成队列研究数据、实时监测

信号及环境因素等建立了流行病学预警系统，能提

前 2~3 周预测传播水平的变化及相应医疗资源的需

求情况；健康不平等分析通过揭示社会决定因素与

健康结果之间错综复杂的关系，指导制定减少健康

差距的相关政策。例如在 All of Us 研究 [13] 中，利

用因果推断增强的大模型可量化解构影响健康差距

的因素当中能被改变的社会因素部分，为今后精准

的政策干预措施提供参考价值。表 3 清晰展示出大

模型在疾病风险预测、治疗响应预测、公共卫生决

策 3 种临床应用场景下的临床意义。

5　挑战与对策

5.1　队列特异性问题

随访丢失可能导致严重的生存分析偏倚。大模

型可以采用基于生成模型的合成数据填充方法来保

留各个变量之间的复杂关联；自适应设计队列实时

预测某参与者的随访丢失概率，并动态调整决策的

顺序，在 All of Us 研究计划 [13] 中应用了这样一套

系统的做法，可以提高长期随访的留存率约 15% ；

多源数据融合是利用现有数据和外部数据来补充失

访参与者的相关结局。组学技术发展的不同步会造

成数据异质化，以领域对抗神经网络或周期一致性

生成对抗网络 [26] 为基础可以解决该类问题，使得

长期队列研究不仅可以在数据本身应用最新的技

术，同时也能保证数据纵向的可比性。

5.2　模型可解释性需求

临床环境中对模型的可解释性需求高于一般的

场景 [30, 31]。针对临床医生这一人群需求，SHAP值 [27]、

LIME[32] 等局部可解释性方法可以量化出特征对于

预测的贡献大小，但是由于面对的对象是患者，因

此不能使用大量晦涩难懂的专业名词去阐述。同时

需要突出其中的具体的易操作的要点，层层递进地

展开。而为了满足监管部门的要求，反事实解释 [33]

能够直接告诉我们当输入变量有变动的时候，会得

到什么结果，这种方式能够更加直接且真实地展现

模型的行为，而算法审计工具则是通过一系列的检

测来推断算法是否公平、鲁棒。

5.3　转化医学瓶颈

从实验室转化到临床尚存在很大距离，如何将

大模型驱动的大队列研究变为临床实用已成为亟待

解决的问题 [34, 35]。学术上对于评价指标的评价很高，

例如 AUC( 曲线下面积 )、灵敏度 (sensitivity) 与特

异度 (specificity)，但这些指标并不能作为临床有效

的证据，因为它们未能完全反映实际临床中面临的

情况与资源约束问题 [34]。为此，一些临床影响评估

框架被陆续开发出来。① 临床决策修改率：直接量

化模型预测对临床决策的影响，即通过事先决定后

听取模型结论再修改最初决定的概率来衡量。此项

指标是基于前瞻性的临床决策研究所获取。② 需治

疗 / 检测人数 (number needed to treat/test, NNT) 与净

表3  大模型驱动的临床应用场景对比

应用场景	 传统方法	 大模型创新方案	 性能改进	 临床意义

疾病风险预测	 静态风险评分(如Framingham评分)	 动态风险轨迹预测	 C-index提高~15%	 精确干预时机

		  多组学早期标志物	 提前10年预警	 超早期预防

		  个体化风险分解	 干预精准度提高40%	 资源优化分配

治疗响应预测	 基于简单临床参数的剂量估计	 多组学个体化剂量预测	 剂量准确率提高30%	 降低治疗不良反应

	 单一生物标志物(PD-L1、TMB)	 整合肿瘤微环境特征	 AUC提高0.15~0.20	 避免无效治疗

	 自发报告的药物警戒	 前瞻性基因型特异性	 罕见ADR检出率提高	 改善药物安全性

		    ADR检测	     60%	
公共卫生决策	 “一刀切”干预策略	 精准分层干预	 可预防病例增加40%	 公共卫生资源优化

	 滞后的被动监测	 多源数据整合预警	 预警提前2~3周	 提前应对疫情

	 简单统计相关分析	 因果推断增强的不平	 政策精准度显著提升	 减少健康差距

	 	   等分析	
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重分类指数 (net reclassification index, NRI)，这两个

指标是从资源分配的角度去估计其有用价值，以及

确定要发现 1 个真正阳性需要多少人筛查或检测

( 图 6)。比如，心血管风险预测模型评估数据显示，

在纳入多组学标志物后 NNT 可由 25 降至 10，即为

预防 1 例心血管事件需要干预的患者人数减少 60%
以上，降低了筛查所需的实际样本数。

实施科学 (Implementation Science) 研究为大模

型从研发到临床应用提供了一个核心框架，在此过

程中会遇到诸多阻碍因素 [35]，也能识别出一些有利

的促进因素。这样可以让潜在问题提前显现，并提

出相应对策来规避不利因素可能造成的影响，包括

评估大模型接入临床工作的难度、用户接受度、成

本效益以及所需的基础设施支撑等。实施科学方法

( 如 RE-AIM 框架 ) 能够全面评估临床转化过程中

的干预措施，并不仅仅只是单纯评价其技术效果，

例如整合基因组风险评分的糖尿病预防模型的技术

在有效性的维度表现得较好，但尚需考虑模型是否

具有足够可及性 (Reach)，模型的应用能否维持较

长时长 (Maintenance)，针对这种情况可以采取简化

检测流程或建立自动化维护体系的办法去改善转化

成效，全面地对大模型临床试验的全过程加以检视，

才能挖掘出产生问题的关键瓶颈，从而更好地提升

模型临床试验的接受度以及持续性。

真实世界验证 (RWV) 是转化过程的最后一个

阶段，也是难度最大的一步，在此阶段需要保证模

型即便是在现实情况而非最理想的运行环境下也可

以维持良好的表现水平 [36, 37] 。科研队列和临床实践

环境数据相差较大，科研队列样本同质性强，数据

完备，随访完整；临床实践环境中数据噪声大、随

访不规律、人群异质性大。为了解决上述问题，研

究者分步开展验证研究，从科研队列至多中心 EHR
数据库 [36, 37]，再到前瞻性的临床实施应用，逐步

检验模型在接近实际情况的环境中能否实现相应的

价值。为了使模型适用于真实世界场景，还需要进

行特定的模型适应策略，如增量学习 (incremental 
learning)，即在上线后可以不断地从新数据中学习

与更新；再有就是正则化 (regularization)，保证模

型更新时性能不会有太大变化，从而使患者体验相

对平稳。例如，一项前列腺癌风险预测模型的真实

世界验证结果表明，在通过增量学习适应后，其稳

定性保持较好，未做适应的学习性能在各亚群之间

波动很大，因此，在真实世界的使用中可能存在疗

效失常的风险。严格的 RWV 过程既是获得监管批

准的关键，也是建立医生信任、用于大规模推广的

重要基础 [38]。根据以上内容表 4 总结了大模型在队

列研究中面临的挑战与对策。

6　未来方向

6.1　新一代队列研究设计

嵌入式 AI 队列是把人工智能由被动分析的工

具转化为队列设计、运行的主要组成部分，利用算

法自适应地进行队列设计与运行，并根据已有数据

持续学习并迭代优化数据采集的方法和方式。同时，

图6  从实验室到临床的转化
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在实时采集数据的过程中也不断地更新模型，实现

模型的动态学习 ；自适应采样，针对不同的亚组设

定最佳的数据采集方案；自学习假设生成可以自动

从数据中挖掘出一些新问题的研究假设。数字孪生

队列 [39] 通过创建参与者的数字化复制体，实现了

前所未有的自由度实验方式。虚拟对照生成给已干

预的患者加上一个假的对照组，模拟该患者是否进

行干预后的不同结局情况；虚拟临床试验模拟可以

在虚拟世界中做实验来预测试验的结果，然后再用

于真实的临床试验设计上，以此方式显著减少试错

成本 [39, 40]。

6.2　方法学突破点

因果表征学习 [23] 通过将数据映射到解缠表征

空间，实现了混杂因素的自动识别和调整，在糖尿

病前期进展研究中成功将基因型、代谢状态等因素

分离到不同维度，实现对不同干预路径的精确评估。

反事实因果推断 [23, 24, 33] 根据建模后的个性化潜在结

果模型，可以对每一个体在未来采用不同的干预后

的不同可能效果做出个性化推断，这也是精准医学

的关键所在。多模态大模型统一框架 [8, 9] 不仅可以

有效整合各种模态多源异构的数据，而且还可以在

共享表征空间和不同模态的数据中使用不同的编码

器来协同学习、转移知识；随着计算能力及算法的

发展 [15,41]，未来能够接受更多的模态，并且可运用

于更加庞大的队列数据。

6.3　伦理框架演进

动态风险告知的伦理规范需要将知情同意从一

次性的事后告知变为持续过程，并允许参与人员根

据自己的实际情况获取不同风险等级的信息；同时

采用可理解的方式清楚准确地传达置信区间、预测

区间和其他可能的解释，避免“假精确性”。为保

证算法公平性，提出了基于多维公平性的算法公平

性定义；在模型训练阶段加入了公平感知的预训练

方法，结合两个不同群体的样本点来调节模型的权

重大小，使不同群体的人能被公平对待，从而显著

提升了公平均衡效果。公众参与是伦理规范演变的

主导力量，以实现伦理规范能够契合各利益方的价

值与期许为原则，确保伦理标准不断完善与变革。

根据以上内容，表 5 总结了大模型驱动队列研究的

未来发展方向。

7　总结

本综述系统梳理了大模型驱动的多组学队列数

据整合与疾病预测的前沿进展。时间感知的建模架

构、异质性人群分析技术和小样本迁移学习策略等

方法学创新使队列研究从描述性分析向精准预测和

因果推断转变。在临床应用方面，大模型驱动的队

列分析已在多个关键领域展现价值：动态风险评估

模型和早诊标志物挖掘提高了疾病早期识别的准确

性；治疗响应预测和药物基因组学分析促进了个性

表4  大模型在队列研究中面临的挑战与对策

挑战类别 具体问题 传统解决方案 大模型驱动的创新对策 实施效果

队列特异性问题 随访丢失

 
多重插补、逆概率加权 生成模型合成数据填补；

自适应设计队列

多源数据融合

减少风险估计偏差；

随访保持率提高15%；

提高结局捕获率

技术平台迭代异质性 批次效应校正 DANN、CycleGAN转换； 
前瞻性重叠样本设计

保持纵向比较的连续性；

技术平台过渡平滑

模型可解释性需求 临床医生信任 简化模型

牺牲性能

SHAP/LIME特征贡献

交互式可视化

提高临床采纳率

患者理解 标准化风险评分 分层解释策略

个性化干预指导

改善患者依从性

监管合规 黑盒限制使用 反事实解释

算法审计工具

加速监管审批

满足可追溯性要求

转化医学瓶颈 学术指标与临床价值

差距

传统验证研究 临床决策修改率

资源导向指标(NNT/NRI)
直接量化决策影响

优化资源分配

临床实施障碍 医学教育 RE-AIM实施科学框架 识别关键障碍

针对性实施策略

实际环境差异 理想环境测试 多阶段验证策略

增量学习适应

维持真实世界性能

持续改进机制
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化治疗决策；人群分层干预策略和流行病学预警系

统优化了公共卫生资源分配。这些应用不仅提高了

医疗决策的精准度，还为医疗系统的成本效益带来

了实质性改善。尽管面临随访丢失、技术异质性、

模型可解释性和转化医学瓶颈等挑战，嵌入式 AI
队列、数字孪生队列、因果表征学习和多模态统一

框架等创新方向正开辟新的可能性。

大模型驱动的多组学队列研究是技术手段的革

新，也是医学科学方法论的革命。通过整合生物学

知识、计算方法和临床实践，有望重构从生物技术

到医疗范式的创新链条，朝着以预防为主的精准治

疗迈进。今后随着技术的发展以及应用经验的积累，

我们期待这一领域在未来产生更多突破性成果，最

终实现从数据到知识、从知识到行动的转化，为人

类健康做出实质性贡献。
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