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Abstract: Chronic diseases, including cardiovascular disease, diabetes, cancer, and chronic respiratory disorders,

have become major global public health challenges, causing substantial morbidity, mortality, and economic burden.

Traditional approaches to screening and management are limited by inefficiency, poor adherence, and unequal

distribution of healthcare resources. With the rapid advancement of artificial intelligence, multimodal models

integrating clinical data, medical imaging, omics profiles, physiological monitoring, and lifestyle information have

provided new opportunities for chronic disease prevention and control. Nevertheless, the current evidence remains

limited in strength, and future efforts should focus on large-scale, multi-center, prospective studies and randomized

controlled trials to enhance the evidence quality and address challenges such as model generalizability,

interpretability, and clinical applicability. Overall, under the framework of evidence-based medicine, multimodal AT

holds great promise as a transformative tool for chronic disease prevention and management, advancing both

precision medicine and public health.

Key words: evidence-based medicine; multimodal model; chronic diseases; artificial intelligence; screening and

management
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