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Abstract: Synthetic biology, as an engineering discipline for designing life systems based on engineering principles,
faces the core challenge of constructing various biological functional modules and systems "from the bottom up"
through the assembly of genetic components and establishing predictive models for sequence-function mapping.
Large language models (LLMs), leveraging their self-supervised pre-training and attention mechanisms, have
provided new tools for cross-scale modeling of biological sequences by deciphering grammatical rules and semantic
features in DNA/RNA sequences across multiple microscopic levels—from genetic components to genomic
systems. This review focuses on how LLMs assist in addressing key design challenges in synthetic biology. It
systematically summarizes the innovative applications of LLMs in synthetic biology, detailing their research
progress at various levels, including genetic components, genetic circuits, gene cluster reconstruction, and phage
genomes. Furthermore, it explores how LLMs integrate with traditional models and engineering approaches to

collectively advance rational design capabilities for modular life system construction, highlighting current
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challenges and future directions.
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