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人工智能在核酸药物设计中的应用进展、挑战与未来
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摘　要：核酸药物作为继小分子药物和抗体药物之后的新型治疗平台，因其设计灵活、作用机制多样而受

到广泛关注。近年来，人工智能技术的迅速发展为核酸药物设计提供了新的思路和技术手段，在序列优化、

结构预测、性质评估以及递送系统改进等方面展现出显著潜力。相关研究主要聚焦于利用深度学习模型进

行序列生成与性能预测，通过对大规模生物数据的学习与挖掘，提高了设计的效率和准确性。然而，算法

可解释性不足、数据质量不高、样本分布不均以及实验验证与模型泛化之间的差距，仍是限制其进一步应

用的重要因素。随着多组学数据的融合、可解释模型的出现以及实验与计算相结合的设计体系逐步完善，

人工智能有望在核酸药物的设计、筛选和临床转化等环节发挥更加关键的作用。
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Advances, challenges, and future perspectives of artificial 
intelligence in nucleic acid drug design
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Abstract: Nucleic acid drugs, as an emerging therapeutic platform following small molecules and antibody drugs, 
have garnered widespread attention due to their flexible design and diverse mechanisms of action. In recent years, 
the rapid development of artificial intelligence (AI) technology has provided novel approaches and technical tools 
for nucleic acid drug design, demonstrating significant potential in sequence optimization, structure prediction, 
property assessment, and delivery system improvement. This review aims to systematically summarize the recent 
progress, challenges, and future directions of AI, particularly deep learning, in nucleic acid drug design. The scope 
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of this review encompasses multiple aspects of AI-driven nucleic acid drug development. We first introduce the 
clinical rise of nucleic acid drugs, including mRNA vaccines and therapeutics, small interfering RNA (siRNA), 
antisense oligonucleotides (ASO), and aptamers, which have achieved remarkable success in treating genetic 
diseases, metabolic disorders, infectious diseases, and cancers. However, their design faces inherent challenges 
including vast sequence space, high costs, off-target effects, in vivo stability issues, immunogenicity risks, and 
delivery efficiency bottlenecks, highlighting the limitations of traditional empirical methods and creating 
opportunities for AI applications. We systematically review deep learning models and their applications in this field. 
Convolutional neural networks (CNNs) excel at extracting local sequence motifs for predicting siRNA efficacy and 
immunogenicity. Recurrent neural networks (RNNs) capture sequential dependencies for RNA coding potential 
prediction and codon optimization. Transformers handle long-range interactions efficiently, demonstrating 
advantages in siRNA design and mRNA degradation prediction. Graph neural networks (GNNs) model complex 
molecular topologies, enabling sophisticated analysis of chemical modifications and interaction networks. In 
sequence design applications, deep learning optimizes mRNA codon usage and untranslated regions (UTRs) to 
enhance translation efficiency and stability, with computational algorithms demonstrating significant improvements 
in protein expression and vaccine efficacy. For siRNA, different modeling strategies have emerged: CNN-based 
approaches with thermodynamic features offer interpretability, GNN-based methods leverage topological modeling 
of RNA-RNA interactions, and Transformer-based frameworks utilize pretrained language models for transfer 
learning across diverse datasets. For ASO design, multi-stage frameworks combine sequence engineering with 
chemical modification optimization through advanced neural network architectures, achieving superior performance 
compared to traditional empirical approaches. For aptamers, machine learning-guided screening methods and 
generative models such as diffusion-based approaches accelerate the discovery of high-affinity molecular binders. 
Beyond sequence design, AI predicts key drug properties. Advanced models assess RNA degradation rates at 
nucleotide resolution and evaluate sequence-structure stability through integrated computational frameworks. 
Despite challenges in data quality and mechanistic understanding, deep learning approaches predict immunogenicity 
through innate immune stimulation assessment and neoantigen identification. Targeting specificity prediction 
employs geometric deep learning frameworks for RNA-ligand binding analysis and various computational 
approaches for managing off-target effects in therapeutic oligonucleotides. Expression level prediction integrates 
multiple factors including mRNA stability, translation efficiency, and immune responses to forecast protein 
production. Delivery system optimization represents another major application area. Deep learning enables rational 
design of novel ionizable lipids through virtual library generation and computational screening, successfully 
identifying superior candidates with minimal experimental synthesis. Advanced AI platforms achieve cell-type-
specific lipid nanoparticle (LNP) design by combining neural networks with high-throughput screening, expanding 
therapeutic potential beyond traditional liver-targeted delivery to extrahepatic tissues. Current AI applications face 
critical challenges. Data scarcity and quality issues remain primary bottlenecks due to limited dataset scales, 
heterogeneity, and reporting bias. Model interpretability poses obstacles for mechanistic understanding and clinical 
acceptance, though explainable AI techniques are emerging. High computational costs, generalization difficulties, 
and the complexity of integrating multi-scale biological factors limit practical applications. Looking forward, we 
identify promising directions including multi-omics data integration for precision medicine, development of 
interpretable hybrid models combining mechanistic knowledge with data-driven learning, personalized drug design 
based on individual genetic and transcriptional profiles, integration of automated experimental platforms for rapid 
iterative optimization cycles, and expansion to RNA-targeting small molecules and gene editing systems. Through 
interdisciplinary collaboration among computational scientists, molecular biologists, and clinicians, AI-assisted 
nucleic acid therapeutics are poised to deliver innovative treatments for major diseases, representing one of the most 
exciting frontiers in AI-enabled biomedical research.
Key words: artificial intelligence; deep learning; nucleic acid drug design; sequence optimization
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1　引言

1.1　核酸药物的兴起与临床价值

近年来，核酸药物作为一种具有革命性意义的

新型治疗手段，在生物医药领域取得了显著进展，

展现出广阔的临床应用前景 [1]。与传统的小分子药

物和抗体药物相比，核酸药物通过直接干预基因表

达过程，提供了全新的治疗策略，尤其适用于那些

传统方法难以靶向的疾病 [2]。特别是在 2019 年末

爆发的新型冠状病毒 (COVID-19) 疫情期间，信使

RNA(mRNA) 疫苗实现了快速研发并投入使用，充

分展示了核酸技术平台在应对突发公共卫生事件中

的高效性和可扩展性，极大推动了全球对核酸药物

的重视和投资 [1, 3]。截至 2023 年，美国食品药品监

督管理局 (FDA) 已批准 17 种以上基于 RNA 的治疗

药物与疫苗，涵盖反义寡核苷酸 (antisense oligo-
nucleotides, ASOs)、小干扰 RNA (small interfering RNA, 
siRNA)、RNA适配体 (Aptamer)以及信使RNA (mRNA)
疫苗等多种形式 [1]。这些药物在遗传性疾病 ( 如脊

髓性肌萎缩症、杜氏肌营养不良症 )、代谢性疾病、

传染病，乃至部分恶性肿瘤的治疗中表现出良好的

疗效和安全性，标志着核酸药物正在从早期研究向

临床成熟阶段稳步迈进 [2, 3]。

1.2　核酸药物的主要类型及应用现状

核酸药物根据其结构和作用机制可分为多种类

型，其中研究和应用最为广泛的主要包括 mRNA
疫苗与治疗剂、小干扰 RNA (siRNA)、反义寡核苷

酸 (ASO) 和核酸适配体 (Aptamer)。
mRNA 疫苗与治疗剂利用了携带特定蛋白质遗

传信息的 mRNA 分子。在细胞内，mRNA 被核糖

体翻译成蛋白质。mRNA 疫苗通过递送编码病原体

抗原 ( 如病毒刺突蛋白 ) 的 mRNA，诱导人体免疫

系统产生针对该抗原的免疫应答，从而预防感染 [3]。

此外，mRNA 技术也正被开发用于蛋白质替代疗法

( 治疗因基因缺陷导致蛋白质缺乏的疾病 ) 和癌症

免疫疗法 ( 编码肿瘤相关抗原或免疫刺激因子 )[3, 4]。

siRNA 是长度约为 21~23 个核苷酸的双链 RNA 分

子。它利用细胞内源性的 RNA 干扰 (RNAi) 机制，

通过与目标 mRNA 特异性结合并引导其降解，从

而实现基因表达的沉默 [5]。siRNA 药物已被成功用

于治疗肝脏相关的遗传性疾病，如遗传性转甲状腺

素蛋白淀粉样变性 (hereditary transthyretin amyloidosis, 
hATTR)，并且在其他疾病领域 ( 如高胆固醇血症、

病毒感染 ) 的研发也在积极推进中 [2, 5]。ASO 是短

链 ( 通常 15~25 个核苷酸 ) 单链合成核酸分子，通

常经过化学修饰以提高稳定性与亲和力。ASO 通过

多种机制调控基因表达，例如与靶标 mRNA 结合

诱导 RNase H 介导的降解、阻断核糖体翻译或调控

mRNA 剪接等 [1]。ASO 药物已在治疗神经肌肉疾

病 ( 如脊髓性肌萎缩症 )、遗传性代谢性疾病等领

域取得成功，是目前获批数量最多的核酸药物类型

之一 [1, 2]。Aptamer 是通过体外筛选技术 ( 如 SELEX)
得到的短链单链 DNA 或 RNA 分子，能够折叠成特

定的三维结构，从而高亲和力、高特异性地结合靶

标分子 ( 如蛋白质、小分子，甚至细胞 )[6]。适配体

功能类似于抗体，但具有生产成本低、免疫原性低、

组织穿透性好等优点。目前已有适配体药物被批准

用于治疗年龄相关性黄斑变性，其在诊断、靶向递

送等方面的应用也在探索中 [6]。

1.3　AI技术特别是深度学习在药物研发中的潜力

概述

传统的药物研发过程漫长、耗资巨大且失败率

高 [7, 8]。人工智能 (AI)，尤其是其子领域深度学习

(deep learning, DL)，正以其强大的数据处理和模式

识别能力，深刻变革着药物发现与开发的各个环节 [1, 9]。

深度学习模型模仿人脑神经网络结构，能够从海量、

高维、复杂的生物数据 ( 如基因组序列、蛋白质结构、

高通量筛选结果 ) 中自动学习隐藏的规律和特征，

而无需预先设定规则 [9, 10]。在核酸药物设计领域，

深度学习展现出巨大潜力，主要体现在多个方面。

首先，它可以加速靶点发现与验证，通过分析多组

学数据识别新的疾病相关基因或 RNA 靶点 [11]。其

次，深度学习能够优化分子设计，在巨大的序列空

间中高效搜索具有最优疗效、稳定性及安全性的核

酸序列 [1, 3]。再次，它有助于预测药物性质，准确

预测核酸分子的二级 / 三级结构、稳定性、免疫原性、

脱靶效应及药代动力学特性 [1, 12, 13]。最后，深度学

习还能改进递送系统，辅助设计和优化用于核酸药

物递送的载体 ( 如脂质纳米颗粒 LNP)，提高递送

效率和靶向 [14, 15]。通过整合深度学习，研究人员有

望显著缩短核酸药物的研发周期，降低成本，提高

成功率，并最终为患者带来更有效、更安全的治疗

方案 [1, 7]。

1.4　核酸药物设计面临的挑战

尽管核酸药物前景广阔，但其设计和开发仍面

临诸多挑战。序列空间巨大是首要难题，即便是短

链核酸，其可能的序列组合也是天文数字。例如，

编码一个典型蛋白质 ( 如新冠病毒刺突蛋白 ) 的
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mRNA，其同义密码子组合产生的潜在序列数量可

达 10632 之巨 [3]，在如此庞大的空间中找到最优序列

无异于大海捞针。其次，设计成本高昂，传统方法

依赖实验筛选 ( 如高通量筛选 ) 来探索序列空间，

不仅耗时，而且成本高昂，限制了可以测试的序列

数量和多样性 [1, 6]。脱靶效应也是一个关键问题，

核酸药物 ( 特别是 siRNA 和 ASO) 可能与非预期的

RNA 序列发生部分互补结合，导致非特异性基因

沉默或功能调节，引发潜在的毒副作用，因此预测

和最小化脱靶效应是确保药物安全性的关键 [1, 5]。

此外，体内稳定性问题不容忽视，核酸分子在体内

易被核酸酶降解，半衰期短。虽然化学修饰可以提

高稳定性，但如何平衡稳定性与药效、如何预测不

同修饰的影响仍然非常复杂 [1, 2]。mRNA 的稳定性

还与其复杂的二级 / 三级结构密切相关，难以精确

预测和控制 [3]。同时，免疫原性也是一个挑战，外

源核酸可能被机体免疫系统识别为“非我”信号，

触发固有免疫反应，导致炎症甚至过敏反应，影响

药物的安全性和有效性 [1]。最后，递送效率是核酸

药物成功的关键瓶颈，核酸分子通常带负电荷且分

子量较大，难以穿过细胞膜进入细胞质或细胞核发

挥作用，因此开发高效、安全、靶向的递送系统至

关重要 [2, 14]。这些挑战凸显了传统设计方法的局限

性，也为人工智能特别是深度学习的应用提供了广

阔的舞台。

1.5　本综述的目的与内容安排

面对核酸药物设计中的机遇与挑战，本综述旨

在系统性地梳理和总结近年来 ( 特别是 2020—2025
年 ) 人工智能 ( 重点是深度学习 ) 在该领域的应用

进展。我们将重点探讨人工智能如何被用于解决核

酸药物设计中的核心问题。具体而言，我们将讨论

核酸序列的设计与优化，涵盖 mRNA、siRNA、

ASO 及 Aptamer 等主要类型。接着，我们将关注核

酸药物关键特性的预测，包括稳定性、免疫原性、

靶向性和表达水平。此外，我们还将探讨核酸药物

递送系统的优化，特别是脂质纳米颗粒 (LNP) 及其

他新兴载体。本综述还将介绍应用于该领域的主流

深度学习模型及其技术特点，分析当前 AI 应用面

临的挑战与局限性，并展望未来的发展趋势和潜在

应用方向。通过整合现有研究成果，本文希望能为

从事核酸药物研发及相关计算生物学研究的科研人

员提供有价值的参考，并推动 AI 技术在该领域的

进一步发展与应用。

2　深度学习模型、技术特点及核酸药物应用

概览

深度学习领域包含了多种具有不同架构和优势

的神经网络模型。在核酸药物设计中，根据任务需

求 ( 如序列分析、结构预测、性质评估 )，研究人

员会选择或组合不同的模型。以下是几类在该领域

应用广泛的深度学习模型、其技术特点以及在核酸

药物中的典型应用。

卷积神经网络 (CNN) 以其卷积层为核心，能

够通过滑动滤波器 ( 卷积核 ) 自动学习输入数据 ( 如
核酸序列的一维表示或结构的二维 / 三级表示 ) 中
的局部模式或基序 [16]。池化层则用于降低数据维度

并增强模型的平移不变性。CNN 特别擅长从序列

数据中提取短程的、位置相关的特征。在核酸药物

设计中，CNN 被广泛应用于预测 siRNA 抑制效率，

例如 DeepSipred 利用 CNN 检测决定 siRNA 抑制潜

力的关键序列基序 [17]。它也被用于识别功能位点，

如预测 mRNA 剪接位点 [5]、DNA/RNA 结合蛋白的

结合位点 [18, 19]，以及预测序列 - 结构稳定性，如

NU-ResNet 使用 CNN 处理编码序列和二级结构信

息的矩阵 [12]。此外，CNN 还用于预测免疫原性，

例如 DeepImmuno-CNN 直接从 MHC- 肽序列信息

中预测免疫原性 [20]，以及预测药物 - 靶点相互作用，

学习化合物 - 靶点对的模式 [21]。

循环神经网络 (RNN)，包括其变种长短期记忆

网络 (LSTM) 和门控循环单元 (GRU)，专为处理序

列数据而设计。其内部状态 (“记忆”) 能够捕获序

列中的时间 ( 或位置 ) 依赖关系 [22]，使其适合建模

核酸序列中碱基之间的顺序关系和上下文信息。

RNN 的应用实例包括预测 RNA 的编码潜力，如

mRNARNN 使用门控 RNN 学习长程模式来区分编

码和非编码 RNA[22]。在密码子优化方面，研究人

员利用 RNN ( 特别是 LSTM) 学习基因表达数据中

的密码子使用模式，以预测能增强蛋白质表达的最

佳密码子序列 [23]。RNN 也被用于从头开始药物设

计，例如 GxRNN 基于基因表达谱生成化学结构 [24]，

以及预测药物 - 靶点相互作用，如 DeepLSTM 用于

整合蛋白质和药物特征进行预测 [25]。虽然纯 RNN
在处理极长序列时可能遇到梯度消失 / 爆炸问题，

但在处理长度适中的核酸片段 ( 如 siRNA、适配体 )
时仍然有效。

Transformer 模型的核心是自注意力 (self-attention)
机制，它允许模型在处理序列中的每个元素时，同
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时权衡序列中所有其他元素的重要性，从而能够直

接捕获长距离依赖关系，且易于并行计算 [10, 26]。这

使其在处理长核酸序列 ( 如 mRNA、基因组区域 )
方面具有显著优势。Transformer 在 siRNA 设计中

有所应用，如 OligoFormer 利用 Transformer 编码器

捕获 siRNA-mRNA 相互作用的深层序列特征 [27]。

在 mRNA 降解预测方面，RNAdegformer 结合使用

Transformer 和 CNN 来预测 mRNA 在核苷酸分辨率

上的降解 [13]。它也被用于从头开始药物设计，如

TransAntivirus 用于抗病毒药物设计 [28] 和 drugAI 结
合 Transformer 与强化学习生成小分子 [29]。此外，

Transformer 还用于核酸序列分析与分类，如 Nucleic 
Transformer 结合自注意力和卷积对 DNA 序列进行

分类 [30]。受 AlphaFold 成功的启发，Transformer 也
被应用于预测 RNA 结构或蛋白质 - 核酸复合物结

构 [31]。Transformer 架构非常适合构建大型预训练

语言模型 ( 如 DNA-BERT[32]、RNA-FM[33])，这些模

型在海量生物序列数据上预训练后，可以迁移到下

游任务，提高性能并减少对特定任务数据的需求 [34]。

图神经网络 (GNN) 专门设计用于处理图结构

数据，能够学习节点 ( 如原子、碱基、基因 ) 的特

征及其之间的连接关系 ( 如化学键、碱基配对、相

互作用 )[35]。GNN 通过聚合邻居节点的信息来更新

节点表示，可以捕捉复杂的拓扑结构和关系信息。

在 ASO 化学修饰优化中，ASOptimizer 使用边缘增

强图 Transformer ( 一种 GNN) 将 ASO 分子 ( 包含

化学修饰 ) 表示为图，学习结构 - 活性 / 毒性关系 [36]。

在 siRNA 效力预测方面，siRNADiscovery 将 siRNA
和 mRNA 序列及其拓扑结构建模为图，以预测抑

制效率 [37]。GNN 也用于 RNA- 配体结合预测，如

GerNA-Bind 使用 GNN 对 RNA 二级结构和配体分

子图进行编码 [38]。此外，GNN 还被广泛用于预测

药物 - 靶点相互作用，将药物和蛋白质靶标之间的

关系建模为图进行预测 [39]，以及预测小分子 ( 包括

潜在的递送载体组分 ) 的各种理化和生物活性 [40]。

实践中，研究人员常常组合使用不同类型的深

度学习架构以发挥各自优势。例如，RNAdegformer
结合了 CNN ( 捕捉局部特征 ) 和 Transformer ( 捕捉

全局依赖 )[13]，而 RiboDecode 则结合了 CNN 和注

意力机制 [41]。图 Transformer ( 如 ASOptimizer 中的

EGT) 则融合了 GNN 和 Transformer 的思想。除了

上述主要用于预测或分类的判别模型外，生成模型

( 如生成对抗网络 GAN、变分自编码器 VAE、扩散

模型 ) 在核酸药物设计中也越来越重要。它们旨在

学习数据的分布并生成新的、具有期望性质的序列

或分子结构。例如，AptaDiff 使用扩散模型进行适

配体的从头开始设计 [42]，而 drugAI 等模型使用

Transformer 结合强化学习 (reinforcement learning, 
RL) 生成新的药物分子 [29]。生成模型为探索广阔

的化学和序列空间、发现全新设计提供了强大的工

具 [43]。表 1 对深度学习模型在核酸药物设计中的原

理、优势和应用进行了总结。

3　人工智能在核酸药物序列设计中的应用

人工智能，特别是深度学习技术，正在全面重

塑核酸药物的序列设计流程。其应用可系统性地归

纳为三个核心领域：序列与化学设计、关键性质预

测和递送系统优化 ( 图 1)。这三个领域相互关联，

共同构成了 AI 驱动的核酸药物研发完整流程。其

中，序列设计是整个流程的起点和基础，对药物活

性、稳定性、翻译效率以及脱靶风险具有决定性影

响。本节将重点介绍人工智能在核酸药物序列设计

中的关键应用及其技术路线。

深度学习凭借强大的序列建模能力，能够从大

规模生物数据中自动学习复杂序列模式，为多类型

核酸药物构建高效、可控且具备良好药理特性的序

列方案。图 2 展示了从输入数据到实验验证的完整

AI 序列设计工作流程，包括六个关键阶段：(1) 输
入数据准备与预处理，包括核酸序列、实验数据、

结构信息与理化性质的收集和标准化；(2) 序列编

码层，通过 one-hot、k-mer 或预训练语言模型 ( 如
RNA-FM[33]) 将序列转化为数值表示，并可加入多

模态信息；(3) 特征提取层，根据任务进行模型选择，

如 CNN ( 捕获局部基序 )、RNN/LSTM/GRU ( 建模

顺序依赖 )、Transformer (处理长程依赖 )或GNN (建
模拓扑结构 ) ；(4) 预测 / 生成层，包括性质预测的

判别模型与用于从头生成序列的生成模型 (VAE、
扩散模型、强化学习等 ) ；(5) 输出与解释，包括序

列评分、性质预测以及注意力可视化或 SHAP 值等

可解释性分析；(6) 实验验证，通过体外 / 体内实验

检验模型预测的真实性与适用性。流程底部的反馈

循环体现了现代 AI 药物研发的核心理念：实验数

据不断反哺模型，通过主动学习实现预测能力的迭

代提升。基于这一流程，以下各小节将介绍人工智

能在不同类型核酸药物序列设计中的典型应用案

例，展示其在实际研发体系中的作用。

3.1　mRNA 序列设计与优化

mRNA 分子的序列设计对其作为疫苗或治疗药
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本图展示了人工智能技术在核酸药物开发全流程中的三大核心应用领域：序列与化学设计、关键性质预测以及递送系统优

化。每个领域包含具体的应用场景和相关的人工智能模型技术。底部展示了支撑这些应用的核心人工智能技术架构。

图1  人工智能技术在核酸药物研发中的系统性应用框架

表1  深度学习模型在核酸药物设计中的原理、优势和应用概览

模型类型 核心机制 主要优势 在核酸药物中的典型应用案例

卷积神经网络 
(CNN)

通过滑动卷积核自动学

习数据(如序列)中的局

部模式或基序

擅长提取短程、位置相关的特

征；具有平移不变性，能有效

识别关键序列基序

预测siRNA抑制效率(如DeepSipred[17])；预测序

列-结构稳定性(如NU-ResNet[12])；预测和优化

mRNA密码子翻译效率(如RiboDecode[41])；预

测MHC-肽复合物的免疫原性(如DeepImmuno-
CNN[20])

循环神经网络 
(RNN)

内部状态(“记忆”)能捕

获序列中的时间(或位

置)顺序和上下文依赖

关系

专为处理序列数据设计；适合

建模核酸序列中碱基之间的顺

序和长程依赖关系

预测RNA的蛋白质编码潜力(如mRNARNN[22])；
从头开始药物设计，预测药物-靶点相互作用(如
DeepLSTM[25])

Transformer 核心是自注意力机制，

在处理序列中每个元素

时能同时权衡序列中所

有其他元素的重要性

能够直接捕获长距离依赖关

系；易于并行计算，处理长核

酸序列(如mRNA)时优势显著，

适合构建大型预训练语言模型

(如RNA-FM[33])

siRNA序列设计与效力预测(如OligoFormer[27])；
核苷酸精度的 m R N A 降解预测 ( 如 R N A -
degformer[13])

图神经网络

(GNN)
专为处理图结构数据设

计，通过聚合邻居节点

信息来学习节点(如原

子、碱基)的特征及其

连接关系

能够捕捉分子或分子间相互作

用的复杂拓扑结构和关系信息

ASO的化学修饰方案优化(如ASOptimizer[36])；
整合 s i R N A - m R N A 拓扑结构 ( 如 s i R N A -
Des ign [37])；RNA-配体结合特异性预测 (如
GerNA-Bind[38]) 
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物的最终效力至关重要，影响着蛋白质表达水平 ( 即
翻译效率 )、分子稳定性、半衰期以及免疫原性等

多个关键环节 [41]。优化 mRNA 序列主要涉及编码

区 (coding sequence, CDS) 和非翻译区 (untranslated 

regions, UTRs) 的设计，这两者都直接关系到 mRNA
翻译成蛋白质的效率。

CDS 区域的密码子优化是提升 mRNA 表达效

率 ( 即翻译效率 ) 的常用手段，即在不改变编码氨

流程包括数据准备、序列编码、特征提取、预测/生成、结果输出与解释，以及实验验证。底部反馈环展示了实验数据用于

反哺模型、实现持续迭代优化的闭环机制。

图2  深度学习模型在核酸药物设计中的典型工作流程
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基酸序列的前提下，选择更“偏好”的同义密码子。

这种偏好性可能与 tRNA 丰度、mRNA 二级结构 ( 尤
其是在起始密码子附近 )、翻译速度等多种因素相

关，并且可能存在组织或细胞类型的特异性 [41]。传

统的密码子优化通常基于密码子使用频率表，但这

种方法可能过于简化，未能捕捉到影响翻译效率的

复杂序列上下文依赖性。LinearDesign 算法 [3] 虽然

不完全是标准的深度学习模型，但其利用计算语言

学中的格点解析思想，能够在极短时间内 ( 如 11 分

钟找到新冠刺突蛋白 mRNA 的最优设计 ) 同时优化

mRNA 的二级结构稳定性和密码子使用，旨在提升

整体表达水平。实验证明，LinearDesign 设计的

mRNA 疫苗相比传统密码子优化的序列，具有更长

的半衰期、更高的蛋白质表达量 ( 表明翻译效率提

升 )，并在小鼠中诱导了显著更高 ( 最多 128 倍 ) 的
抗体滴度 [3]。

深度学习模型，如基于 CNN 的工具，可以通

过学习不同组织或细胞类型的大规模基因表达数

据，揭示更精细的、细胞类型依赖性的密码子偏好

规律，预测能够最大化蛋白质表达 ( 即最大化翻译

效率 ) 的最佳密码子使用策略 [23]。例如，Ribo-
Decode 框架利用深度学习模型直接从核糖体谱数

据中学习翻译效率的关键决定因素，并结合最小自

由能 (minimum free energy, MFE) 预测模型来评估

mRNA 稳定性，通过上下文感知优化生成具有更高

蛋白质表达潜力的密码子序列 [41]。近期开发的

GEMORNA 等生成式模型，通过学习天然 mRNA
序列的分布特征，能够从头生成具有优化特性的

全长 mRNA 序列。该模型结合变分自编码器

(variational autoencoder, VAE) 架构和强化学习策略，

在保持序列可翻译性的同时优化多个目标 ( 如表达

量、稳定性、免疫原性 )，在序列设计方面展现出

创新潜力 [44]。与传统的基于规则或频率表的方法相

比，GEMORNA 能够在更广阔的序列空间中探索，

发现兼顾多种性能指标的新颖序列组合。这些例子

说明，AI/DL 通过综合考虑序列、结构和细胞环境

因素，能够更有效地优化密码子选择，从而显著提

高 mRNA 的翻译效率。

对于 UTR 优化，5'UTR 和 3'UTR 在 mRNA 的

稳定性、亚细胞定位和翻译起始 / 调控中扮演关键

角色，对翻译效率有直接影响 [45]。优化 UTR 序列

是提高 mRNA 药物性能，特别是翻译效率的另一

个重要策略。Optimus 5-Prime 模型是一个利用 CNN
分析大规模 (28 万条 ) 5'UTR 序列数据的工具，能

够准确预测 5'UTR 对翻译效率的影响 ( 相关系数达

0.93)，并结合遗传算法或基于梯度的 Fast SeqProp
方法来设计具有特定表达水平 ( 即特定翻译效率 )
的优化 5'UTR 序列 [4]。 在此基础上，近期提出的

Helix-mRNA 模型通过将 UTR、编码区和多种调控

元件纳入统一的全序列建模框架，实现了对 mRNA
全序列功能的联合建模与优化，为 UTR 序列在整

体 mRNA 治疗分子设计中的系统性优化提供了新

的思路和技术路径 [46]。

3.2　siRNA序列设计与优化

siRNA 通过 RNAi 机制沉默目标基因，其设计

的核心在于确保高效的抑制活性 (efficacy) 和高度的

特异性，同时最大限度地减少脱靶效应 (off-target 
effects)。深度学习模型正被用于解决 siRNA 有效性

预测与脱靶效应管理的挑战。尽管 RNAi 通路已

被广泛研究，但预测哪些 siRNA 序列能够高效地抑

制目标基因仍然是一个挑战 [17]。目前主流的 siRNA
设计模型包括基于 CNN 的 DeepSipred[17]、基于 GNN
的 siRNADiscovery[37] 以及基于 Transformer 的 Oligo- 
Former[27]，它们分别采用不同的技术路线来预测

siRNA 的抑制效率和特异性。除了预测有效性，机

器学习 ( 包括深度学习 ) 也被用于预测和管理

siRNA 的脱靶效应。例如，通过分析 siRNA 子区域

的热力学性质或利用 GNN 建模 siRNA 与全基因组

转录本的相互作用网络，可以评估潜在的非特异性

结合风险，从而指导设计更安全的 siRNA[5, 47]。为

了更系统地比较这些主流 siRNA 设计模型的优劣，

我们在表 2 中总结了它们的核心技术、主要优势以

表2  主流siRNA设计模型的系统对比

模型 核心技术 主要优势 局限性

DeepSipred[17] CNN+热力学 识别关键基序 依赖人工特征工程

  整合专家知识 
siRNADiscovery[37] GNN+拓扑 捕获相互作用网络 计算复杂度高

OligoFormer[27] Transformer+RNA-FM 处理长程依赖 缺乏可解释性

  迁移学习 
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及局限性。

基于表 2 的对比分析，三种主流 siRNA 设计

模型各有特色，适用于不同的应用场景。Deep-
Sipred 的优势在于通过 CNN 卷积核直接学习关键

抑制基序 ( 如 seed region 的碱基偏好、位置依赖的

序列模式 )，其预测结果具有相对较强的可解释性，

研究人员可以通过分析卷积核的权重来理解模型关

注的序列特征 [17]。然而，该模型需要人工设计热力

学等特征 ( 如自由能、GC 含量等 )，这种特征工程

过程依赖于领域专家知识。当应用于新的物种或细

胞类型时，可能需要重新设计和筛选特征，限制了

其通用性。siRNADiscovery 的创新在于将 siRNA
和靶 mRNA 的相互作用建模为图网络，能够同时

捕获序列信息、热力学性质 ( 如结合自由能 ) 以及

siRNA-mRNA 配对后形成的拓扑结构信息 [37]。这

种多层次信息的协同建模使其在处理复杂靶标 ( 如
长 mRNA、存在多个剪接亚型的基因 ) 时表现更优，

因为图结构天然适合表示分子间的复杂相互作用关

系。但是，图的构建和 GNN 的训练计算成本较高，

且模型需要准确的 RNA 二级结构预测作为输入，

而结构预测本身的不确定性可能会影响最终性能。

OligoFormer 的强项是利用预训练 RNA 语言模型

(RNA-FM) 的强大序列表示能力。通过在海量 RNA
序列上的无监督预训练，RNA-FM 已经学习到了丰

富的序列 - 功能关系知识 [33]。OligoFormer 在此基

础上进行微调，无需显式的 RNA 二级结构预测即

可捕获序列的深层语义特征和长程依赖关系，这

使其在处理长 siRNA 或复杂序列上下文时具有优

势 [27]。此外，在小样本场景下 ( 例如针对新靶标仅

有少量实验数据时 )，OligoFormer 可以通过迁移学

习仍然保持较好的预测性能。但是，Transformer 架
构的“黑箱”特性使研究人员难以理解模型的决策

依据，也难以从中提取可直接用于实验设计的生物

学规则，这在一定程度上限制了其在需要机制解释

的场景中的应用。在选择 siRNA 设计工具时，应根

据具体需求进行权衡。对于数据充足且需要较强可

解释性的项目 ( 例如需要向监管机构解释设计原

理 )，DeepSipred 是稳健的选择；在处理结构复杂

或具有多种相互作用模式的靶标时，siRNADiscovery
的图网络建模能力更具优势；而在数据受限、需要

快速迭代或希望利用大规模预训练知识的场景下，

OligoFormer 的迁移学习能力更具实用价值。未来

的研究方向可能是将这些方法的优势结合起来，例

如开发可解释的 Transformer 模型或将图网络与预

训练语言模型相融合。

3.3　ASO序列设计与优化

ASO 的设计需要精确选择与目标 RNA 结合的

位点，并优化序列以获得高亲和力和特异性，同时

常需要进行化学修饰以提高稳定性、降低毒性并改

善药代动力学。人工设计最优ASO序列费时费力 [1]，

因此深度学习平台被开发出来以加速这一过程，重

点关注 ASO 序列的特异性和结合效率优化策略。

ASOptimizer 是一个典型的例子，它是一个两阶段

的深度学习框架 [36]。第一阶段是序列工程，利用机

器学习模型 ( 如线性因子模型 ) 分析大规模实验数

据，学习序列特征 ( 如结合热力学、二级结构 ) 与
ASO 效力之间的关系，预测候选 ASO 序列对目标

mRNA 的抑制效果，从而筛选出潜在的高效靶位点

和序列 [36]。第二阶段是化学工程，利用先进的深度

图神经网络架构，如边缘增强图 Transformer (edge-
augmented graph transformer, EGT)，学习不同化学

修饰组合对 ASO 性能 ( 活性、毒性 ) 的影响。模型

将 ASO 的序列和化学修饰信息表示为图结构，通

过学习已知修饰模式，优化新 ASO 序列的化学修

饰方案，以进一步提升活性并降低风险 [36]。 
相较于此，传统 ASO 设计主要依赖研究人员

根据经验采用启发式规则 ( 如适度的 GC 含量、避

免复杂二级结构区域、排除重复序列 ) 挑选有限数

量的候选靶位点；随后结合常用的、文献中已验证

的化学修饰 ( 如全硫代磷酸酯骨架、局部 2′-O- 甲
基修饰等 ) 进行小规模实验筛选。这种方法虽然具

有直观、可解释性强等优点，但其根本局限在于 ：

(1) 搜索范围受限，仅能测试数个至数十个序列，

极易错过最优解 ；(2) 实验成本高且迭代周期长 ；

(3) 化学修饰组合空间过大 ( 例如 20-mer 在仅含 5
种修饰类型的条件下理论组合超过 1014)，人工难以

系统探索；(4) 难以整合已有大规模 ASO 实验数据

和结构信息 [1]。因此，传统流程在高通量筛选能力

和化学空间探索能力上均显不足。

基于此，多阶段深度学习方法 ( 如 ASOptimizer)
在多个方面展示了相较传统经验流程的系统性优

势 [36]。其序列工程模块能够在全转录本范围内进行

高通量预测式筛查，从“盲目试错”转向“定量预

测驱动”，显著提高初筛命中率；而化学工程模块

通过图神经网络整合位置效应、协同修饰效应及毒

性风险等因素，避免了传统方法中对固定修饰模式

的依赖，使得修饰优化从经验式选择跃迁为可计算

探索。在 IDO1 基因的实验验证中，ASOptimizer
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输出的 ASO 在体外对目标 mRNA 表达的抑制效率

显著优于传统经验设计 ( 提升幅度达 40%~60%)，
并且毒性与脱靶效应更低 [36]，进一步证明了这种多

阶段优化策略的应用价值。

尽管如此，ASOptimizer 仍存在一定局限性，

主要包括：训练数据主要覆盖常用修饰类型，对新

兴非经典修饰 ( 如 PMO、tricyclo-DNA、2′-F 等 )
的预测能力仍需验证；体内药代与组织分布等复杂

因素尚未系统整合，导致体外到体内转化的预测能

力有限；图神经网络的可解释性不足，使研究人员

难以直接从模型中提炼机制性设计规则；模型的跨

基因泛化能力也需要更广泛的数据验证 [36]。总体而

言，以 ASOptimizer 为代表的多阶段深度学习框架

在序列与化学修饰双维度的系统优化方面展现出传

统经验流程无法比拟的能力，是 ASO 设计从经验

驱动走向理性设计的重要方向，但其进一步成熟仍

依赖于更大规模的实验数据积累与可解释性增强技

术的发展。

3.4　核酸适配体与核酶设计

适配体和核酶是具有特定结构和功能的 RNA
或 DNA 分子，其设计也受益于深度学习。在核酸

适配体设计与优化方面，目标是找到能高亲和力、

高特异性结合靶标的序列。传统 SELEX 方法效率

有限，且难以覆盖巨大的理论序列空间 [6]。机器学

习，特别是深度学习，被引入以指导适配体的发现

和优化。机器学习引导的粒子展示 (machine learning 
guided particle display, MLPD) 方法是一个代表性实

例 [6]。该方法首先通过高通量实验 ( 粒子展示 ) 获
取初始文库中大量序列与其靶标 ( 如 NGAL 蛋白 )
的相对结合亲和力数据。然后，利用这些数据训练

深度神经网络模型 ( 如全连接网络和 CNN) 来学习

序列 - 亲和力关系。训练好的模型随后被用于“计

算进化”：一方面，模型可以预测对已有高亲和力

序列进行智能突变后的效果；另一方面，模型可以

直接生成全新的序列并预测其亲和力。通过这种模

型预测与实验验证相结合的迭代优化循环，仅需评

估相对较少 ( 约 18.7 万 ) 的序列，就能发现比初始

文库中最优序列亲和力更高的新适配体。值得注意

的是，该方法还能指导序列截短，得到更短但结合

力相当或更优的适配体，提高了临床应用潜力 [6]。

除了判别模型，生成模型也被用于适配体的从头开

始设计。例如，AptaDiff 框架利用扩散模型 (diffusion 
model) 在离散的适配体序列空间中生成具有高亲和

力和新颖性的新序列 [42]。

进一步来看，当前适配体设计中常见的生成模

型包括扩散模型、变分自编码器 (VAE) 和生成对抗

网络 (generative adversarial network, GAN)，它们各

具优势与局限。以 AptaDiff 为代表的扩散模型通过

逐步去噪的方式生成序列，具有生成多样性高、可

控性强和训练稳定性好的特点，因此能够有效探索

更加广阔的序列空间。例如，AptaDiff 生成序列的

新颖性比例可达到 68% 左右 [42]。不过，由于生成

过程需经历多步迭代，其计算成本较高，且对预测

结构稳定性的信心相对有限，可能影响部分序列的

折叠正确性。相比之下，VAE 通过构建连续潜在空

间来生成序列，更容易保持与训练数据一致的统计

规律，其结构预测置信度较高 ( 约 0.87)，生成速度

快，也便于在潜在空间进行插值探索 [48]。然而，

VAE 生成序列的多样性不足，新颖性仅约 45%，可

能限制模型发现完全新型序列的能力。GAN 及其

变体 ( 如 cGAN) 亦被应用于适配体序列生成 [48]，

但由于其训练不稳定、容易出现模式崩溃，且难以

处理离散类型数据，因此目前更适合用于辅助任务

而非直接承担从头生成的核心角色。相比纯生成式

方法，MLPD 将深度学习预测与高通量实验筛选结

合起来，其优势在于能够依靠真实实验反馈不断提

升模型精度，同时以远低于 SELEX 的规模筛选出

高亲和力序列 [6]，因此具有极高的实际应用价值。

尽管深度学习为适配体设计带来显著进展，但

仍面临若干核心挑战。例如，适配体功能依赖其精

细的三维结构，但目前 RNA/DNA 结构预测的准确

性仍明显落后于蛋白质。尽管 AlphaFold 3 在蛋白

质结构预测中可达到 TM-score>0.9，但对 RNA 的

预测 TM-score 仅为 0.6~0.7[49]，这一偏差会直接影

响基于结构的设计与虚拟筛选。另一方面，不同靶

标的结合机制差异显著，而现有数据库仍然集中于

少数靶标，使得深度模型在面对结构未知的新靶标

时缺乏足够的训练数据 [6]。此外，高亲和力结构往

往复杂，可能包含稳定性较差的区域，与体内半衰

期需求相冲突；虽然化学修饰能够提升稳定性，却

可能反向影响折叠与靶标识别。如何通过深度学习

在多目标之间取得平衡，例如同时优化亲和力与稳

定性，仍是需要重点攻克的问题。未来研究可进一

步发展多目标优化算法、构建可预测修饰效果的模

型，或探索更稳定的适配体骨架。总体而言，随着

大规模实验数据的累积、核酸结构预测技术的突破

以及生成模型不断成熟，AI 有望将适配体开发周期

从数月压缩至数周，并推动性能超越传统 SELEX
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的新型适配体分子的诞生。

相比于适配体，核酶的设计主要聚焦于催化活

性的优化，其序列 - 功能关系通常更加复杂。为了

高效探索核酶在序列空间中的可行变体，深度学习

同样被引入核酶进化策略中。例如，Rotrattanadumrong
等 [50] 将深度学习嵌入进化算法，用于研究 RNA 连

接酶核酶的“中性突变网络”。在该研究中，深度

神经网络首先被训练用于预测核酶序列的催化活

性，随后进化算法依赖模型的预测结果，引导搜索

那些在保持活性前提下具有不同序列的“中性”变

体。通过深度模型与进化策略的结合，研究者能够

在高维序列空间中高效识别功能等效但序列多样的

核酶，为理解核酶的鲁棒性和可进化性提供了重要

证据 [50]。这一思路展示了深度学习在解析复杂序列 -
功能景观方面的潜力，也为未来核酶的定向设计与

优化提供了可扩展的技术路径。

4　人工智能在核酸药物特性预测中的应用

除了直接设计序列，人工智能 ( 特别是深度学

习 ) 在预测核酸药物的关键理化和生物学特性方面

也发挥着重要作用，这些预测结果可以反馈到设计

环节，指导序列的进一步优化。

4.1　稳定性预测

核酸序列的稳定性对药效起着关键作用。核酸

药物在体内的稳定性直接影响其作用时间和最终疗

效，RNA 分子尤其容易被内源性核酸酶降解 [1]。因

此，提高分子的稳定性是核酸药物设计中的一个核

心目标，这不仅关系到药物在体内的半衰期，也影

响其储存和运输条件 [1, 3]。

人工智能技术，尤其是深度学习模型，为预测

序列稳定性提供了更精细和可扩展的工具。首先是

在预测 RNA 降解方面，mRNA 的降解速率与其序

列和结构密切相关。RNAdegformer 模型结合了卷

积 (CNN) 和 Transformer 中的自注意力机制 (self-
attention)，能够捕获 mRNA 序列中的局部和全局依

赖性，以核苷酸级别的分辨率精确预测 RNA 的降

解速率。这类预测有助于在设计早期就识别和修饰

不稳定的序列区域，从而生产更稳定的 mRNA 疫

苗和治疗药物 [13]。其次是预测序列 - 结构稳定性，

RNA 的二级和三级结构对其稳定性至关重要。NU-
ResNet和NUMO-ResNet是基于CNN (ResNet架构 )
的深度学习模型，它们将 RNA 序列和预测的二级

结构信息编码为 3D 矩阵，用于评估特定 RNA 序

列形成稳定结构的可能性，这间接反映了其热力学

稳定性 [12]。最后，深度学习还用于预测化学修饰对

稳定性的影响。在 ASO 和 siRNA 中，引入化学修

饰 ( 如硫代磷酸酯骨架、2'-O- 甲基修饰等 ) 是提

高核酸酶抗性的常用策略。深度学习模型 ( 如
ASOptimizer 中使用的图神经网络 ) 可以学习不同

化学修饰组合对分子稳定性和活性的影响，从而推

荐最优的修饰方案 [36]。此外，一些预测 siRNA 有

效性的模型也会将热力学稳定性作为输入特征或预

测目标之一 [17]。

4.2　免疫原性预测

控制核酸药物的免疫原性风险至关重要。外源

核酸分子，特别是未经修饰的 RNA 或含有特定基

序 ( 如 CpG) 的 DNA，可能被细胞内的模式识别受

体 (PRRs，如 TLR7/8、RIG-I、MDA5) 识别，触发

固有免疫反应，导致细胞因子释放和炎症 [1]。虽然

在疫苗设计中有时需要适度的免疫刺激，但在治疗

性应用中，过度或非预期的免疫原性通常是有害的，

可能导致副作用、降低疗效甚至危及患者安全。因

此，预测和控制免疫原性风险是核酸药物设计中的

关键一环。

人工智能技术，尤其是深度学习模型，在核酸

药物免疫原性预测领域也展现出显著潜力。一方面，

模型可以用于预测序列的固有免疫刺激性。通过学

习已知具有高或低免疫刺激活性的核酸序列特征，

基于RNN或Transformer的模型可以扫描候选序列，

识别是否存在已知的免疫刺激基序 ( 如富含 UG 的

序列 )，并评估其激活 PRRs 的可能性。这种预测

可以指导通过同义突变或化学修饰来移除或掩盖这

些基序 [1]。另一方面，在癌症疫苗等应用中，需要

预测编码产物的免疫原性 ( 如新抗原 )，即由

mRNA 编码的多肽 ( 特别是源自体细胞突变的新抗

原 ) 能否有效激活 T 细胞免疫应答。NeoaPred 是一

个深度学习框架，它通过预测肽 -HLA 复合物的

结构，并整合表面和结构特征来计算指示免疫原性

的“异物评分”[51]。DeepImmuno-CNN 则直接使用

CNN 预测 MHC- 肽复合物的免疫原性，而非仅仅

预测结合亲和力，旨在更直接地评估免疫激活潜

力 [20]。此外，机器学习算法如随机森林、多层感知

器 (MLP) 和 XGBoost 也被用于构建预测病毒来源

保护性免疫原的模型 [52]。这些模型有助于筛选最有

可能诱导有效免疫反应的抗原序列，为疫苗设计提

供指导。这类新抗原预测工具通常需要准确预测肽

段与 HLA 分子的结合亲和力，基于此目的已有大

量生物信息学工具被开发 [53]，但这些工具的性能和
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适用范围仍在不断优化中。此外，预测免疫原性不

仅需要考虑肽 -HLA 结合，还需要考虑 T 细胞受体

(TCR) 识别以及肽 -HLA 复合物与免疫细胞表面受

体的相互作用 [54]。

尽管已有诸多方法被用于免疫原性预测，但相

关研究目前仍然面临根本性的困难，而最核心的挑

战在于用于训练模型的数据本身缺乏明确的生物学

机制依据。现有研究主要依赖两类数据：一类来自

体外细胞实验中对核酸序列诱导的 TLR 激活或细

胞因子释放的检测；另一类则来自临床试验中的免

疫不良事件统计。然而，体外实验往往只涉及单一

通路 ( 通常是 TLR7/8/9)，无法全面反映体内复杂

的 PRR 网络；同时实验中使用的核酸浓度通常远

超临床水平，因此难以反映真实免疫反应 [1, 55]。而

临床数据虽然更贴近真实应用，却受到患者个体差

异、剂量、递送系统、疾病状态等多重因素干扰，

使得“序列 - 免疫反应”之间的因果链条难以建立。

此外，不同研究对免疫原性的定义并不统一，有基

于细胞因子浓度阈值的，也有基于不良事件发生率

或抗体滴度的，使得标签本身具有主观性和不一致

性。这不仅导致不同来源的数据难以整合，也使监

督学习模型难以形成稳定可靠的预测能力。更重要

的是，免疫原性本身是一个高度多维度、个体化的

复杂生物学性质，与 HLA 型别、既往免疫史、微

生物组甚至 mRNA 的化学修饰和二级结构等因素

均密切相关 [1, 55]。在免疫机制尚未完全阐明的前提

下，任何模型都不可避免地只能学习到数据的统计

相关性，而无法真正捕捉免疫激活的因果规律，这

也限制了模型在新类型序列、新修饰方式或新临床

情境中的泛化性能。

现有免疫原性预测方法在建模策略上也存在显

著差异。基于序列基序 (motif) 的规则模型通常通

过扫描 CpG、UG-rich 片段或 poly(U) 等已知高风

险模式来评估免疫刺激倾向 [1]，其优势是直观可解

释，但无法识别此前未报道的新型免疫刺激序列，

也无法处理复杂结构依赖的激活机制。基于结构的

模型尝试预测 RNA 的二级结构并评估其激活 RIG-I
或 MDA5 的可能性，但 RNA 结构预测在长序列上

的不确定性较高，且目前缺乏明确的定量规律来描

述特定结构触发免疫激活的阈值，因此仍只能提供

粗略的定性评估 [55, 56]。端到端的深度学习模型 ( 如
DeepImmuno-CNN) 能够从序列中自动学习复杂模

式，在现有数据集上通常可以获得较高的预测性

能 [20, 57]，但其可解释性差、对训练数据质量高度敏

感，且难以应对全新的序列模式或化学修饰。某些

模型如 NeoaPred[51] 则专注于新抗原免疫原性预测，

其适用于癌症免疫应用，但无法用于 siRNA、ASO
等固有免疫激活风险评估。总体来看，不同方法各

有优劣，没有任何单一策略能够全面准确地预测

核酸药物的免疫原性，因此实际设计中更常见的

做法是结合多种模型，将基序扫描、结构预测和深

度学习风险评估联合使用，并辅以实验验证以确保

可靠性。

未来提升免疫原性预测的关键在于从数据和方

法两个层面同时改进。首先，需要构建具有机制标

注的高质量数据集，不仅记录免疫反应的整体强弱，

也应包含 PRR 激活谱、细胞因子类型、剂量 - 反应

曲线、时间动力学及不同免疫细胞亚群的反应特征，

并结合单细胞转录组、细胞因子多重检测和体内成

像等多维数据 [55]。这样的数据将使模型能够学习免

疫激活的机制逻辑，而不仅仅是序列特征的统计共

现关系。其次，在模型方法上，可解释的深度学习

架构是未来方向，通过注意力机制、GNN 或基于

SHAP 的解释工具，使模型能够指出导致免疫激活

的关键序列或结构特征 [58]。此外，将免疫学知识构

建为知识图谱并引入因果推断框架，可以帮助模型

学习更接近因果机理的规律，例如利用干预实验 ( 如
定点突变去除某一基序 ) 的数据来推断“去除某基

序导致免疫原性下降”这一因果关系，而非单纯统

计相关性。进一步地，通过预测 - 实验迭代的主动

学习策略，使模型能够主动选择信息量最大的序列

进行验证，在数据稀缺的情况下更高效地提升模型

性能。

总体而言，免疫原性预测仍是核酸药物设计中

最具挑战性的环节之一。当前的工具大多仍停留在

相关性建模阶段，准确性和可推广性受到数据、机

制认知及应用场景差异的多重限制。要实现真正可

靠、可推广的免疫原性预测，需要计算模型与免疫

机制研究的深度结合，通过多学科协作推动形成机

制驱动的预测框架，从而在未来的核酸药物开发中

发挥更为关键的作用。

4.3　靶向性预测

确保核酸药物 ( 尤其是 siRNA、ASO、适配体 )
精确地与其预定靶标 ( 通常是特定的 RNA 或蛋白

质 ) 结合，同时最大限度地减少与非目标分子的相

互作用 ( 脱靶效应 )，对于保证疗效和安全性至关

重要 [1]。人工智能技术已被开发用于辅助预测核酸

药物的靶向特异性。
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在预测 RNA- 配体结合特异性方面，对于靶向

RNA 的小分子或适配体，预测其结合特异性具有

挑战性。GerNA-Bind是一个几何深度学习 (geometric 
deep learning) 框架，它利用 GNN 对 RNA 的多种构

象状态和配体的结构进行编码，并整合两者之间的

相互作用信息，以预测小分子选择性结合特定 RNA
构象的能力。该模型在相关任务上取得了领先性能 [38]。

更广义地，深度学习模型被用于预测药物 - 靶
标相互作用 (DTI)，这包括核酸类药物的潜在靶标

与蛋白质靶点之间的相互作用。例如，有研究使用

DeepLSTM ( 长短期记忆网络 ) 结合蛋白质的进化

特征和药物分子的亚结构指纹来预测 DTI[25]。

对于预测 siRNA/ASO 脱靶效应，如前所述 ( 第
3.2 节 )，机器学习和深度学习模型可以通过分析序

列特征、热力学性质或构建相互作用网络来预测

siRNA 或 ASO 与其潜在脱靶转录本的结合可能性，

从而指导设计具有更高特异性的序列 [5]。

4.4　表达水平预测

对于以产生功能性蛋白质为目标的核酸药物

( 主要是 mRNA 疗法和疫苗 )，其最终的蛋白质表

达水平是衡量其有效性的核心指标。准确预测给定

核酸序列能够产生的蛋白质总量，对于药物筛选和

优化至关重要。蛋白质的表达水平是一个复杂过程

的综合结果，受到多种因素的调控，包括 mRNA
的转录后修饰、稳定性 ( 如第 4.1 节所述 )、细胞内

运输、翻译起始和延伸的效率 ( 这与序列设计紧密

相关，如第 3.1 节讨论的密码子和 UTR 优化 )，以

及可能的免疫反应 ( 如第 4.2 节所述 ) 对翻译过程

的影响。

人工智能技术，尤其是深度学习模型，因其能

够整合多维度信息并捕捉复杂非线性关系的能力，

在预测蛋白质表达水平方面显示出巨大潜力。这些

模型通常利用大规模的功能性实验数据进行训练，

例如包含大量不同 mRNA 序列 ( 特别是 UTR 和编

码区变体 ) 及其对应蛋白质产量的报告基因检测数

据，或者利用核糖体图谱 (ribosome profiling) 数据

来推断翻译效率。通过学习序列特征 ( 如密码子使

用偏好、特定序列基序、预测的二级结构 ) 与观察

到的蛋白质产量之间的关联，深度学习模型能够对

新的 mRNA 序列的表达潜力进行预测。

例如，前文提到的 Optimus 5-Prime 模型 [4]，

虽然主要用于设计优化的 5'UTR，但其核心能力在

于准确预测 5'UTR 序列对翻译效率 ( 进而影响总表

达量 ) 的影响。同样，RiboDecode 框架 [41] 结合深

度学习模型和核糖体谱数据，旨在直接优化并预测

具有更高蛋白表达潜力的密码子序列。此外，像

LinearDesign[3] 这样能够同时优化稳定性和密码子

使用的算法，其设计的序列在实验中表现出更高的

蛋白质表达量，也间接验证了其底层模型对影响表

达水平因素的预测能力。这些基于人工智能技术的

表达水平预测工具，能够有效地指导研究人员在庞

大的序列空间中筛选和设计出具有理想蛋白质产量

的 mRNA 候选药物，从而加速研发进程并提高成

功率。

5　人工智能技术驱动的核酸药物递送系统优化

有效的递送是将核酸药物送达作用部位的关键

环节。由于核酸分子本身的特性 (大分子量、负电荷、

易降解 )，通常需要借助递送载体来保护核酸、促

进细胞摄取并实现靶向递送 [2]。人工智能技术正被

越来越多地应用于优化这些递送系统，特别是脂质

纳米颗粒 (LNP)。
5.1　LNP递送系统

LNP 是目前临床上最成功、应用最广泛的核酸

递送载体，其成功应用是 siRNA 药物 ( 如 Onpattro)
和 mRNA 疫苗 ( 如辉瑞 /BioNTech 和 Moderna 的

COVID-19 疫苗 ) 得以实现的关键因素之一 [15]。

LNP 通常由四种主要成分组成：可电离阳离子脂质

(ionizable cationic lipid)、胆固醇、辅助脂质 (helper 
lipid) 和聚乙二醇化脂质 (PEGylated lipid)。其中，

可电离脂质是核心成分，负责在酸性内涵体中质子

化以包裹核酸，并在细胞质中帮助核酸释放 [15]。

传统 LNP 的开发依赖于经验和大量的试错性

化学合成与生物测试，而 AI，特别是深度学习，正

在加速这一过程，尤其体现在脂质纳米颗粒设计与

筛选的 AI 应用中。一个重要的方向是新型脂质分

子的理性设计。Wang 等 [14] 报道了一个成功案例，

他们首先训练深度学习模型分别预测候选脂质分

子的关键物理化学性质 ( 如表观 pKa) 和 mRNA 递

送效率。然后，利用生成模型创建了一个包含近

2 000 万种潜在脂质结构的虚拟库。通过 AI 驱动的 
“生成 - 评估”迭代循环，研究人员仅需合成和测

试少量 ( 几十种 ) 由 AI 筛选出的顶尖候选分子。结

果显示，AI 设计的多种新型脂质在小鼠模型中的

mRNA 递送效率显著优于经典的 MC3 脂质，甚至

媲美更先进的 SM-102 脂质。这项工作证明了 AI
在大规模虚拟筛选和发现全新高性能递送材料方面

的强大能力 [14]。重要的是，模型还提供了一定的可
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解释性，揭示了如包含芳香环等结构特征与高递送

效率之间的关联，有助于指导后续设计 [14]。

另一个关键应用是 LNP 配方和性能的预测与

优化。AGILE (accelerated generative inverse design of 
lipid nanoparticles with experiments) 平台是这方面的

一个例子，它将深度学习与高通量的组合化学合成

及体外筛选相结合 [15]。AGILE 利用深度神经网络

对包含不同结构脂质的 LNP 配方进行体外递送效

率评分预测。该平台的一个关键特点是能够根据不

同的目标细胞类型调整模型，从而实现“细胞类型

定制化”的 LNP 设计。研究团队利用 AGILE 快速

设计并评估了一系列用于 mRNA 递送的 LNP，发

现不同细胞系对脂质结构确实存在偏好性差异，证

明了为特定组织或细胞类型优化递送载体的可行

性，这对于将核酸疗法拓展到肝脏以外的组织 ( 如
肺、免疫细胞等 ) 具有重要意义 [15]。

此外，AI 也被用于预测 LNP 的体内功效。有

研究利用机器学习模型 ( 如随机森林、XGBoost、
贝叶斯优化 ) 结合 LNP 的配方组成 ( 脂质比例 )、
制备参数 ( 如微流控条件 ) 以及分子的理化性质描

述符，来预测 siRNA-LNP 或 mRNA-LNP 在体内的

基因沉默效率或蛋白质表达水平 [5, 59, 60]。这类模型

可以指导研究人员优化 LNP 的配方和生产工艺，

以获得最佳的体内药效和安全性。

5.2　其他新兴递送载体的AI优化方法

除了 LNP，研究人员还在探索其他类型的核酸

递送载体，如多肽载体、高分子纳米粒、外泌体、

病毒样颗粒 (virus-like particles, VLPs) 等。虽然目

前 AI 在这些载体优化中的应用相较于 LNP 可能还

不够深入，但其潜力同样巨大。机器学习方法可以

被应用于这些基于纳米颗粒的其他核酸药物递送策

略优化中。首先，类似于 LNP 中的脂质设计，AI
可以用于设计新型载体材料，例如设计具有特定性

质 ( 如生物降解性、靶向性、核酸结合能力 ) 的新

型聚合物或多肽。其次，AI 可以预测载体性能，通

过建立模型预测不同载体 ( 如不同序列的多肽、不

同结构的高分子 ) 与核酸的结合效率、形成的纳米

复合物的尺寸和稳定性、细胞摄取效率以及体内分

布等。再次，如果载体需要通过连接靶向配体 ( 如
抗体片段、适配体、小分子 ) 来实现组织或细胞特

异性递送，AI 可以辅助优化靶向配体，包括设计或

筛选最优的配体及其与载体的连接方式。最后，AI
有助于整合多源数据，将来自不同实验 ( 体外、体

内 )、不同载体类型的数据整合起来，训练更通用

的预测模型，或者利用迁移学习将在数据较丰富的

载体系统 ( 如 LNP) 上学到的知识应用于数据较少

的新兴载体系统。虽然针对这些其他载体的具体 AI
应用案例在现有文献中细节不多，但基本原理与

LNP 的应用是相通的。随着这些新兴递送技术的发

展和相关数据的积累，可以预见 AI 将在其设计和

优化中扮演越来越重要的角色。

6　人工智能在核酸药物设计中的挑战与局限性

尽管人工智能技术在核酸药物设计中取得了显

著进展，但其应用仍面临一系列挑战和固有限制，

需要在未来的研究中加以解决。值得注意的是，虽

然人工智能技术包含多种方法 ( 如传统机器学习、

深度学习、进化算法等 )，但当前该领域面临的主

要挑战集中在深度学习模型的应用上，这主要是因

为深度学习已成为核酸药物设计中最主流和最具潜

力的 AI 技术。

6.1　数据稀疏与高质量数据不足的瓶颈

深度学习模型的性能在很大程度上依赖于大规

模、高质量的标注数据进行训练。然而，在核酸药

物领域，获取这样的数据往往成本高昂且耗时 [61]。

一个主要问题是数据量不足。相比于小分子药物或

蛋白质，许多核酸药物相关的实验数据集规模仍然

较小。例如，用于训练 ASO 效力预测模型的数据

量远不如 siRNA，且常常局限于特定基因或细胞类

型 [1]。高质量的 RNA 三维结构数据、RNA- 小分子

相互作用数据也相对匮乏 [56, 62]。另一个相关问题是

数据质量与偏倚。生物实验数据往往存在异质性 (来
自不同实验室、不同实验条件 )、噪声和批次效应。

此外，已发表的数据可能存在“报告偏倚”，即更

倾向于报告阳性结果 ( 有效的序列或化合物 )，而

阴性结果数据较少，这可能导致模型产生过于乐观

的预测 [10]。数据标注的准确性和一致性也是关键问

题。这些数据问题限制了模型的泛化能力和可靠性，

是当前 AI 应用于核酸药物设计的主要瓶颈之一 [5]。

6.2　模型的可解释性问题与临床接受度

许多深度学习模型，特别是结构复杂的模型 (如
深度神经网络、Transformer)，常被批评为“黑箱”，

即其做出预测的内部决策过程不透明，难以解释 [10, 63]。

这种缺乏生物学洞见的特性是一个主要障碍。如果

模型仅给出预测结果 ( 如某个序列高效或有毒 )，
而不能解释其判断依据 ( 如哪些序列特征或结构模

式是关键 )，研究人员就难以从中获得新的生物学

知识或设计规则，也难以信任模型的预测。这进一
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步影响临床转化。在药物研发这一高风险领域，理

解药物的作用机制和模型预测的可靠性至关重要。

缺乏可解释性可能会阻碍 AI 设计的候选药物获得

监管机构 ( 如 FDA) 的批准和临床医生的接受 [58]。

虽然近年来可解释人工智能 (explainable AI, XAI) 技
术 ( 如注意力机制可视化、特征重要性评分、SHAP
值分析、反事实解释等 ) 有所发展 [64]，但在生物序

列和结构等复杂应用场景下，实现真正有意义且可

靠的解释仍然是一个挑战 [65]。

6.3　计算成本、训练效率与优化难题

训练大型深度学习模型 ( 尤其是基于 Transformer
或 GNN 的模型，以及处理大规模数据集的模型 )
通常需要强大的计算资源，如图形处理单元 (GPU)
或张量处理单元 (TPU) 集群，这带来了显著的硬件

成本和能耗 [63]。高昂的计算成本限制了模型的可及

性。同时，训练时间可能非常耗时，从几小时到几

天甚至几周不等，这减慢了模型开发和迭代的速度。

此外，超参数优化本身就是一个复杂的优化问题。

寻找最佳的模型架构和超参数 ( 如学习率、层数、

节点数等 ) 往往需要大量的实验和调整，进一步增

加了时间和计算开销 [63]。

6.4　模型泛化与过拟合问题

过拟合是深度学习中常见的问题。当训练数据

有限或模型过于复杂时，模型容易“记住”训练数

据中的噪声或特有模式，而不是学习到底层的普适

规律，导致模型在训练集上表现很好，但在新的、

未见过的数据 ( 测试集或实际应用场景 ) 上表现较

差 [10]。与之相关的是泛化能力的挑战。开发出能够

在不同数据集、不同生物条件 ( 如不同细胞类型、

物种 )、不同分子类型或不同实验设置下都能稳健

工作的模型 ( 即具有良好泛化能力 ) 是一个重要的

目标 [27]。目前许多模型可能只在特定的数据集或任

务上表现良好。为了缓解过拟合和提高泛化能力，

需要采用正则化技术、交叉验证、数据增强以及设

计更鲁棒的模型架构。

6.5　生物系统复杂性

当前的 AI 模型往往侧重于预测核酸分子本身

的性质或在简化系统 (如体外实验 )中的行为。然而，

核酸药物在体内的最终效果受到极其复杂的生物系

统因素影响，包括吸收、分布、代谢、排泄 (absorption, 
distribution, metabolism and excretion, ADME)，以及

与体内分子的相互作用、细胞内运输、免疫系统应

答、个体遗传背景差异等 [1]。将这些系统层面的因

素有效整合到模型中非常困难，主要是因为缺乏足

够的跨尺度、高质量的体内数据。这导致模型预测

与体内实际药效之间可能存在差距，是当前 AI 应
用于核酸药物设计面临的又一重大挑战。

7　未来趋势与潜在应用方向

尽管存在挑战，人工智能 ( 特别是深度学习 )
与核酸药物设计的融合仍是大势所趋，未来几年有

望在以下方向取得重要进展。

7.1　多组学数据与深度学习整合以推动精准医疗

未来的研究将更加注重整合来自基因组学、转

录组学、蛋白质组学、表观遗传组学、代谢组学等

多维度的数据 (multi-omics)[66]。深度学习模型具备

处理这种高维、异构数据的能力，能够从中挖掘更

深层次的疾病机制、识别更精准的药物靶点，并预

测个体对药物的反应 [67]。结合单细胞组学技术，AI
有望在单细胞分辨率上理解疾病异质性，为开发高

度个性化的核酸药物 ( 例如，针对特定肿瘤突变或

患者遗传背景的药物 ) 提供前所未有的机遇 [68]。

7.2　复杂且可解释的混合AI模型开发前景

为了克服“黑箱”问题，开发兼具高性能和高

可解释性的模型将是关键研究方向 [58]。这可能涉及

设计内生可解释的模型架构，例如结合注意力机制

或引入生物学先验知识。同时，需要开发更先进的

XAI 技术，提供更可靠、更有意义的解释。探索混

合 AI 模型，例如将基于知识或规则的系统与数据

驱动的深度学习相结合，也是一个有前景的方向 [58]。

随着模型复杂性的增加，例如更大规模的预训练模

型和更复杂的图网络，保持和提升可解释性将面临

新的挑战和机遇 [26]。

7.3　个性化核酸药物的精准设计与预测方法

AI 将驱动核酸药物从“通用型”向“个体化”

转变。基于患者的特定基因型、转录谱、疾病状态

或其他生物标志物，AI 模型有望实现多个目标。首

先，它可以设计针对个体突变或异常表达基因的

siRNA/ASO/gRNA 序列 [69]。其次，模型能够预测

个体对特定核酸药物的敏感性、疗效和潜在副作

用 [65]。再次，AI 可以优化针对个体患者的给药剂

量和递送策略，这将极大推动精准医疗在核酸治疗

领域的实现 [70, 71]。

7.4　自动化实验与计算平台的集成趋势

未来的药物发现将更加依赖于自动化。AI/ML
模型将与机器人自动化平台 ( 用于高通量合成、筛

选和测试 ) 紧密集成，形成快速迭代的“设计 - 构建 -
测试 - 学习”(design-build-test-learn, DBTL) 闭环系
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统 [72, 73]。这种自动化平台能够以远超人力的速度和

规模进行实验和数据分析，极大加速核酸药物及其

递送系统的发现和优化过程 [6]。

7.5　RNA靶向小分子药物及基因编辑应用的AI支持

AI 的应用将扩展到核酸相关的其他领域。在

RNA 靶向小分子药物方面，RNA 正成为越来越重

要的小分子药物靶点。AI，特别是基于结构的药物

设计和 GNN，将在预测 RNA 结构、识别潜在的小

分子结合位点、虚拟筛选和优化 RNA 靶向小分子

方面发挥关键作用 [10, 38]。同时，AI 在基因编辑系

统 ( 如 CRISPR-Cas) 中的应用已相当广泛。其主要

应用包括设计高效、特异性的向导 RNA (gRNA)[11]，

预测基因编辑的效率和结果 ( 如同源重组修复 vs 非
同源末端连接 )[74]，评估和预测脱靶效应 [11]，以及

优化基因编辑系统的递送载体 [75]。随着基因编辑疗

法进入临床，AI 在其精准性和安全性优化方面的作

用将更加凸显 [76]。

8　结论

人工智能，尤其是深度学习技术，正以前所未

有的方式渗透并重塑着核酸药物设计的范式。通过

利用强大的数据处理、模式识别和预测能力，深度

学习正在帮助研究人员克服传统药物研发方法面临

的诸多瓶颈，推动该领域从经验驱动的试错模式向

数据驱动的理性设计模式转变。本综述系统总结了

人工智能技术在核酸药物 ( 包括 mRNA、siRNA、

ASO、适配体等 ) 序列设计与优化、关键性质 ( 稳
定性、免疫原性、靶向性、表达水平 ) 预测以及递

送系统 ( 特别是 LNP) 优化等方面的应用进展。大

量研究案例表明，人工智能技术不仅能够显著提高

设计效率、降低研发成本，还能发现性能更优、更

安全的候选药物，甚至揭示新的生物学机制。

然而，我们也必须清醒地认识到当前深度学习

应用所面临的挑战与局限性。数据稀疏性与质量问

题、模型的可解释性不足、高昂的计算成本、模型

的泛化能力以及如何有效整合复杂的生物系统因素

等，都是亟待解决的关键问题。克服这些挑战需要

跨学科的紧密合作，包括开发更先进的算法、构建

更大规模和更高质量的数据库、发展更可靠的可解

释性方法，以及将 AI 模型更紧密地融入实验验证

流程。

展望未来，AI 与核酸药物领域的结合将更加

深入和广泛。多组学数据的整合将推动个性化精准

医疗的发展；更复杂且可解释的 AI 模型将成为研

究人员的得力助手；自动化实验与计算平台的集成

将极大加速研发进程；同时，AI 也将在 RNA 靶向

小分子药物、基因编辑等新兴领域扮演关键角色。

可以预见，深度学习将持续作为核心驱动力，引领

核酸药物研发进入一个更加高效、精准和富有创造

力的新时代。未来将有更多由 AI 辅助设计的创新

核酸疗法问世，为攻克遗传病、传染病、癌症等重

大疾病带来新的希望，这无疑将是人工智能赋能生

物医药领域所描绘的最激动人心的前景之一。
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