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Abstract: Nucleic acid drugs, as an emerging therapeutic platform following small molecules and antibody drugs,
have garnered widespread attention due to their flexible design and diverse mechanisms of action. In recent years,
the rapid development of artificial intelligence (AI) technology has provided novel approaches and technical tools
for nucleic acid drug design, demonstrating significant potential in sequence optimization, structure prediction,
property assessment, and delivery system improvement. This review aims to systematically summarize the recent

progress, challenges, and future directions of Al, particularly deep learning, in nucleic acid drug design. The scope
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of this review encompasses multiple aspects of Al-driven nucleic acid drug development. We first introduce the
clinical rise of nucleic acid drugs, including mRNA vaccines and therapeutics, small interfering RNA (siRNA),
antisense oligonucleotides (ASO), and aptamers, which have achieved remarkable success in treating genetic
diseases, metabolic disorders, infectious diseases, and cancers. However, their design faces inherent challenges
including vast sequence space, high costs, off-target effects, in vivo stability issues, immunogenicity risks, and
delivery efficiency bottlenecks, highlighting the limitations of traditional empirical methods and creating
opportunities for Al applications. We systematically review deep learning models and their applications in this field.
Convolutional neural networks (CNN5s) excel at extracting local sequence motifs for predicting siRNA efficacy and
immunogenicity. Recurrent neural networks (RNNs) capture sequential dependencies for RNA coding potential
prediction and codon optimization. Transformers handle long-range interactions efficiently, demonstrating
advantages in siRNA design and mRNA degradation prediction. Graph neural networks (GNNs) model complex
molecular topologies, enabling sophisticated analysis of chemical modifications and interaction networks. In
sequence design applications, deep learning optimizes mRNA codon usage and untranslated regions (UTRs) to
enhance translation efficiency and stability, with computational algorithms demonstrating significant improvements
in protein expression and vaccine efficacy. For siRNA, different modeling strategies have emerged: CNN-based
approaches with thermodynamic features offer interpretability, GNN-based methods leverage topological modeling
of RNA-RNA interactions, and Transformer-based frameworks utilize pretrained language models for transfer
learning across diverse datasets. For ASO design, multi-stage frameworks combine sequence engineering with
chemical modification optimization through advanced neural network architectures, achieving superior performance
compared to traditional empirical approaches. For aptamers, machine learning-guided screening methods and
generative models such as diffusion-based approaches accelerate the discovery of high-affinity molecular binders.
Beyond sequence design, Al predicts key drug properties. Advanced models assess RNA degradation rates at
nucleotide resolution and evaluate sequence-structure stability through integrated computational frameworks.
Despite challenges in data quality and mechanistic understanding, deep learning approaches predict immunogenicity
through innate immune stimulation assessment and neoantigen identification. Targeting specificity prediction
employs geometric deep learning frameworks for RNA-ligand binding analysis and various computational
approaches for managing off-target effects in therapeutic oligonucleotides. Expression level prediction integrates
multiple factors including mRNA stability, translation efficiency, and immune responses to forecast protein
production. Delivery system optimization represents another major application area. Deep learning enables rational
design of novel ionizable lipids through virtual library generation and computational screening, successfully
identifying superior candidates with minimal experimental synthesis. Advanced Al platforms achieve cell-type-
specific lipid nanoparticle (LNP) design by combining neural networks with high-throughput screening, expanding
therapeutic potential beyond traditional liver-targeted delivery to extrahepatic tissues. Current Al applications face
critical challenges. Data scarcity and quality issues remain primary bottlenecks due to limited dataset scales,
heterogeneity, and reporting bias. Model interpretability poses obstacles for mechanistic understanding and clinical
acceptance, though explainable Al techniques are emerging. High computational costs, generalization difficulties,
and the complexity of integrating multi-scale biological factors limit practical applications. Looking forward, we
identify promising directions including multi-omics data integration for precision medicine, development of
interpretable hybrid models combining mechanistic knowledge with data-driven learning, personalized drug design
based on individual genetic and transcriptional profiles, integration of automated experimental platforms for rapid
iterative optimization cycles, and expansion to RNA-targeting small molecules and gene editing systems. Through
interdisciplinary collaboration among computational scientists, molecular biologists, and clinicians, Al-assisted
nucleic acid therapeutics are poised to deliver innovative treatments for major diseases, representing one of the most
exciting frontiers in Al-enabled biomedical research.
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E2 REFIJERERBRAYNOT PR RE TERE

W) B 430 07 8 R BB, 3 B 1 o R AA /K (B
BIBERER ) Tl tEs DL K ik R4S
ZA KBTI, L mRNA 41 35 598 K g ig
[X (coding sequence, CDS) A1 3EHH i [X (untranslated

regions, UTRs) (11, XPHE AR E 16 R 3] mRNA

R PR R 2R

CDS [X $sk ) 5 5 7 LA R 42 T+ mRNA R
CRVEEACER ) MEHFB, AEASR ML R
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ERFAIRRR T, G “Imi” KESCHEE T
XAt P AT fE 5 (RNA F2 5 .mRNA 4517 (
HRAERGZS T ). BIEEES 2 MR
5K, JF BT REAF (R AL gn S B (e S v Y A%
G BRSO B T SR AR, (HiX
FhO7 VRl e T4, KRR B 380 5 el R 3 28 R 1)
BRFH) E N O HEIYE. LinearDesign .35 P B4R
ANTE AR AE IR B 2 SR, EHR AT RE S
RS ST AR, REREAERAGIN R (11 4y
PR B8 e ) 28 2 1 mRNA (st st ) FEH AL
mRNA [ st s H, SR
AR R ILIKF. SLIGAE B, LinearDesign 1% 11 )
mRNA & B AL R B TR R 51, A K
MRl EE R E AR R (RUTRERCRER
), HEADARTHERTRET (K2 12865) 1
P o,

REESA IR, AT CNN LA, W LLE
i 27 ) A [) 2H 23 4 i 28 AR ) KR A R PR 3k 4
5, FE~ ERGAII . 40 SRR A 1) 2 B i
A, To0I e % 5 R B i 3Rk (B s R AL
ROE ) I I RS T S P 0, Ribo-
Decode HE Z8 | FH IR B2 2 ) A8 H 42 AAZ 0 A 15 4L
P ST R E R R, IRES A /N E
FH B¢ (minimum free energy, MFE) T illl 1% 714 >k 17 fi&
mRNA e, i BN SORAARAL AR A
AR R IE WSS A M IR
GEMORNA “5 42 sl S0 R, 3@ 1 5% 3] P8 mRNA
Fr B0 B o3 AR, B8 MK AR BCE AT DR AL R 1 1Y
4 K mRNA /7 5. %8R 85 & 48 7> B 9 b &%
(variational autoencoder, VAE) ZE 4 flI 554k 22 5] TR MK,
TEARFE 7 51 Al R 1 R BAe 4k 2 4N B AR (ansRik
B REtE. SRR ), ARSI T T L H
BUFE 1 MY SRS  JE T N SR R () 7 VR A
Et, GEMORNA g £ 5 I (1 3 1) 25 18] F R R
R LA 2 ML REFR AR T BT S G . XL T
UiBH, AUDL @I ZREH BT A, 45 FZ0 IR

KIZ, Refe A ek, i g
f# mRNA FIERERCE.

XFF UTR flift, S'UTR F1 3'UTR 7E mRNA [f]
R e N 4H A E A AR BT 4G / PR T 4 G
Ft, KRR ROR A BB . Rk UTR J7 41
/212 = mRNA 25701 g, Rl 2 BB R ) —
/N LK . Optimus 5-Prime #2784 52— /MR CNN
SRR (28 Ji%% ) S'UTR P854RI T &, fg
g HERA TN S"UTR S0 8P B A 520 (HH % RE0E
0.93), Jf 4Gt AL Bk B, T 96 FE 1) Fast SeqProp
JiiERBTE BA R 8 B KT (BRI PR )
itk SUTR J7 41 M. 7R Al b, i 948 )
Helix-mRNA 5B 6 UTR. 4 i DR 22 b ifi 42
TCIFANGE— B2 Fr HEEHESE , SE3 T % mRNA
EF DR E E R S5 AL, Jy UTR FP 81 72 5
& mRNA 697 70 1 Bt i R g LA 52 4t 1 %
(1 S AR AR A7
3.2 SiRNAFFIRIT S

siRNA 3B 1 RNAi HLHTCER H bRk, Hiit
RZ O AE TR DR = RIS L (efficacy) FlE L
e, (R AR O B R b sk 2D Ji B R4S (off-target
effects). TR 2% SR IE 3 T ff ok siRNA A 201
ToUI 5 B 2 R F ) PR AR . R RNAT I %
Bz whae, (HTIIIIELE sIRNA 751 G 6% = 240
#1 HARIE R AR — A% U H AT E R siRNA
B R AL FE L T CNN ) DeepSipred”. Z£T GNN
[¥) siRNADiscovery"” PAJ £ Transformer ] Oligo-
Former™”, "B 41143 71 5K F AN [F) 1) 2 A % 28 ok 70 )
SIRNA (R4 R AR et e B 7 000G 25k, HL
W) (BRI B 2] ) WA T T AN A PR
SiRNA SRR . Fan, @it 53 siRNA £ [X 35
(I 2 S BRI ) GNIN 24 siRNA 5 45 L K 41
BRI AH ELAE N 4, AT AVTAl 5 L8 1) R S
gh A AR, AT i 5 1 TH B 22 45 1) siIRNAD ¥, 3y
T R G L EUX R sIRNA R )R 55,
BATESR 2 PGS T eI OHEAR ., FERALL

&2 ERSIRNARIHER ) REISEE

R AN SEN FEMH SRR 1t

DeepSipred"” CNN+# )2 BUN R AN THRFAE T 7
AL AR

siRNADiscovery™” GNN+fi b T PR AR F P 4% T E R

OligoFormer™” Transformer+RNA-FM Ab KRR AR = AT R R

TR
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SRy PR

BT R 2 WX #r, =R F 9 siRNA &1t
R KA R, & T A FR R % 5. Deep-
Sipred L ALE Tl i CNN & A% B #25% o)
2T (W seed region FBRIE(w 4F A7 B A i 1)
FRAAE ), FETIT 45 5L EAG A R i o] R 1
G WNAREV S BU R s AT i S R RS
TERIFFRRAE " SR, AR T BN TR
SRR (WNE HEE. GC F RS ), XMRHIE TR
TEREAR T A0 & SR . 28 T8 i Fh el
MO AYRy, AT Re TR B E BT AR R, PR T
H 8 H 7. siRNADiscovery [ €18 7£ T K siRNA
HIEE mRNA B AH B AR @B B 2%, 52 % [F] i
HIRFHE B Il (g6 HlhEe ) LA
siRNA-mRNA Fie %t 5 % B i) 4 4 45 4 15 BB i
Fh 2 J2 A5 S B P () A AR A LA A B AT R BB AR (
£ mRNA. fF7E2 AN B A (3L ) BRI AR,
DRl Sy 1 285 ) R AR G 3R 7 431 TR B2 A HLAE FH K
Fo HiE, ERHER GNN BT H AR &,
LA A TS A ) RNA 2% 45 4 TR0 AR A N
T 35 46 FOUIN A B 1) AT o 1 W e 2 5 Wl B 24 PE e
OligoFormer [ 58 1 ;& F| FH 71 Il Z5 RNA 15 5 5 1Y
(RNA-FM) HI38 K F8IR R AE ). IR RNA
Fe A B E M T, RNA-FM Ei4% 5] 8] 1 3
B - ek 2 50R B OligoFormer 7F i 3
fih AT RO, Jo i R RNA =2 25 44 Tt B
AR 7 B IR J2 18 SCRFIE AR G &R, X
i AR AL FE K siRNA BUE 2% 781 B F SO BoA
# N geAh, TEANFEARECT (B ikt Xt B AR AL
H /b ESLIGE R ), OligoFormer 1] LL# L IE #2527
SIUPRRFF T ) I Ve . {H A2, Transformer 42
R “JBAE” Rt AT 78N M DL A AR Y (1) T SR
M, HE DA AR SR BCRT B T S B W B AE A
SR, IXAE— AR PR T A TR EEAL SR
Iz PN 7EIERE siRNA Wit THER, NAR
P BAR T SRFATRUST . X T Edis 70 2 B 7R EER ]
fir BEPE I T H (A7) 0 75 ) M LA A R T R
P ), DeepSipred 7 fa i (I 5 o 7E AT 450 B 2%
R 2 P AR AL SERRI, siRNADiscovery
(R P P 2 R e ) BE LR 3 s TAE B 2 PR . 75 %2
PRk A B B R K T R A IR I 5 T
OligoFormer HIL# 2% 21 fig J1 B B St HANME. KK
HIBIEFE 77 )R] BE A R X Le VA L 38 4 ke ok,
& AT fERE R Transformer 155 789 50K ] X 4% 5 Tl

WZRE 5 AR
3.3 ASOFFIEITSMHK

ASO M H 7 ERE ML RS H b RNA 5611
Bt IFRALT 51 ASRAS SR A RURE e, [
W AT B DR R E I PR R IR
280 11% « N LA ASO 7413kt 3% 771,
DR R 2 21 °F S F R SR DU g X — it 72, &
RORTE ASO J7 1 B 7 VR 0 25 6 202 A A SR s
ASOptimizer & — MR ] 1, e —DIF B
(IR 2 I REE PO, S — B BUR P LR, R
A5 IR (2 ME DR AR ) 43 B R AR S 5 4
W, FAFIIRE (AR R4 ) 5
ASO R 12 [A 2% &, TR IE ASO /7 1% H Ax
mRNA FIHIHIACR, AT G H 98 78 0 = R A R
FFF) P, S5 I BURAGEE TR, R ek iR
B R 28 R 4% B0 ), i 238 55 18] Transformer (edge-
augmented graph transformer, EGT), % >] A [FA{L 2%
B E X ASO TERE (TEPE. k) 52, A
¥ ASO I 7 FI AL 228 i (s R s NS5 K, @
o2 o] S aME R, RAET ASO 7 A1 ik 5 &
WiJT2E, LAE— B4R THE M I BRI AU B,

T, %4 ASO Wit 3 B 7T 7
MR 250 K H R R A (A& JE i GC & &,
TR RN HERES P ) kA R
B MEEREAL A s BEGSS AW . SOk S 50E
=B (AR IR ER & 42, 5 2-0- H
FABMRSE ) AT /N SL IR e . X PR TR AR R
HEM. A ERER R, (HHRARRET -
() BRI ZIR, a2 8+ 7 50,
W 5y 4t i AR AR+ (2) S A HOB AR K
(3) f B 2 A 23 A K (40 20-mer 7EAX 7 5
B R4 P RS AL AT 10™), AN TR
RGRE ; (4) MLUES O KA ASO 5258 Hif
FgskE B M. Bk, &SR FETE il 5 ik Ae
b 2= 2= MR R ) B3 RAE .

BT, ZMrBURES ) )7 (W1 ASOptimizer)
FEZAJTIH R T MEAE R R RENER
0 B T AR ER A 05 41 4 i SR N AT
EE R AGG A, A CHHRE Bm CERm
MBS 7, SR mwITar b2 s M TR R
T Ik P A 0 X 5 R A KON P RIS A RO B B
PR S5 R 2, B 1AL 885 ot [ e s TR 2
PR, o B A e A A 22 56 3k B RS M T i 55
RZE. f£ IDO1 F A ) 95 56 56 1F 1, ASOptimizer
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By 1K ASO FEAR AR AT H AR mRNA 25 [ 41 1) 280 %
B EMR T AL A5 BT ($ETHIE A 40%~60%),
o H P AR N BEAIG B, PR T IR 2
B B AIC A S s 1 S FH AR E

JUE ik, ASOptimizer 175 47 7€ — 52 J& BR 1,
FEASE - IGREHE 3 W B A, X
M4k 24 & i (40 PMO. tricyclo-DNA. 2'-F 45 )
(PRI BE TS 75 HnE s RN AR AL M TE R I
R MR RGHES, SRR A A1) Ti0l g
AR s EIMa R K nT R AN 2, (7R N A
M UL L DAY o S AL 1 e T H RN 5 B2
FERZARE TR E T2 (R IE B kT
s LL ASOptimizer AT 1 2 B B iR B 2% S HE 22
FE 7 50 546 A4S M 04 B2 1) 2R G A0 AL 7 T e B HE A%
G AR LIk LI RE 71, & ASO Wit N& 5
URZhE ) BEVE VLU B B T ), H P AT
AT B DR (1) S 56 B4 AR 2R 5 AT AR R 1 s
KRR FE.
34 HEERASZERE T

T C A A% I 2 LA RR 08 45 K R D RE ) RNA
8( DNA 7> 7, H& 2o TIRES ). fEXR
ERA R ST, H AR R B RE SRR T
R SR A A AR T A . A& 8t SELEX VAR
AR, HoAfE A BRI ES 21 2] o pLEs 2
>, RERRIREE ), I N LA S E I A ) R R
ARtk HLER > 51 S HRLCT 2R (machine learning
guided particle display, MLPD) J5 & — MUK 5L
il %7 e Sl o s S (KT R ) 3R
HUWI 6 SO R & 7 41 5 bR (40 NGAL & H )
(IR &5 G o F 150 . SR JE, R I S 550 1)1 2%
TRIEMN 2GR (G423 42 I 4% A CNN) K2 2]
FFA - SRR R R INSRIFIARYBE S H T “it
SR s — 7, A ET DA A s A )
FFANHEAT B ReRAL JG R s —J7 1, BAIAT DL
B AR AT ETI T B O LS AT 7 Jd I X R
R 55 SIS B E AR 45 A RO IE R, AR OF
AT (29 18.7 13) WIF 41, whie A I Lb W46
SCEE IR A SRR ) B i R IE A . (EAR TR
e, ZITIEIERIR S P HIE, 1SRIEEESES
FIAH M B AR G B AR, R 1 I R N i 47
B 7 AR, AR R A T A 1) A Sk
GU T BN, AptaDiff HEZEF HH HB A (diffusion
model) 75 & B I B AR 7 51 25 18] b A B B A = SR A
JIRH B B 5

B RE, HRTE AR BT o W A
RO B, 225 B L% (VAE) A SO 4t
WX %% (generative adversarial network, GAN), ‘E11%
ARALFER. L AptaDiff AR 15 BE A d ik
BL M T AE T A, BAAEREZ . 1]
P PR AT I 2R A8 PRI BORR i, R RR 8 A AR R
ST R B F A A E] . a0, AptaDiff A= 5T 81 1)
HrEE LL Bl ATk B 68% A2 Y ANk, BT AR
WREREZBIEA, IR, B
SERRE YRS LARXTE PR, AT RESZ MR &840 7 21 1)
& EmM. M2, VAE B EESEHES
(R A BT 51, B o DR ik S5 IR0 — B git
A, H AT EAS R (2 0.87), AERURE
P, HEFEBES T HERE ™, R,
VAE LEFPAIRI ZREPEA L, BRI 45%, 7T
A PR IS 28 e R 56 A B AL T B IR RE 7. GAN K H
AR (41 cGAN) 78 8 87 38 B AR 5 81 A g 1Y,
ElHTHINGATRE . Bo BB, HAE
Ab PR ESER AL, R B RS IE A TR TS
T B AP A S A B R AZ O #f Eo AH B AT AE i X
7715, MLPD R IR B2 57 2] P00 5 iy B 2 56 0 0k 45
ek, FALAALE T REHE K58 1 ST I0 IR A W 3
FHEERORE B, A LA AR T SELEX AR 377 126 th
SRR A Y, DR B AR ) S B R R AR

RERFE S SRR ok B ke, A
PTG A% DBk BN, 3& E AR D B A RS
AN = 4ESh e, {2 H BT RNA/DNA 544 Fl 1) 4
PEAT R ¥ J5 T ER A . /RE AlphaFold 3 £ 5 [
5 435 4 T3 o AT ik 3 TM-score>0.9, {H T RNA [
T TM-score 1K 0.6~0.7"", X — 1l 7 2 B 5
Wi B g5 R st S B LRE . Sy —J7 T, AR
PRI &SP 2 5 52, mIA SR E R E T T
BGERERR,  ASAG IR P A B TR NS 4548 S PR AR
R R N R . A, SRR SR
RS, wRet S REHRZEN X, S5hNFE
AR SRAHM R s BAME =B IR e SE T AR e 1, A
A g ) 2 4T B 5 REAR R A o a0 VR B A )
£ 2 H s 2 (B G-, E ARG A ) 51
SEME, AN TR SO ) . RORA TR
R 2 HARMRAC RS A8 8 AT il 2 1 25 SR A A
B, BRREREMERATE. EmE, ME
KU S0 K0 1 SR AR AR 45 M4 TN AR 1) A
DL A A R AN T s, AT A B & AT B 4
MBS HH RS I BE B A% 48 SELEX
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PR A3 AR 7y T A

FHEC T & BCAE, G sort £ 2R T
MR, HFH) - ThRe R REEEME k. N T
1o RAR R ALBGAE P 512 (] P R T AT AR A, BREES )
[ERERE 5 NAZRGHEAL SRS H . 40, Rotrattanadumrong
2 DD IREE 2 I N ML, T 0F9C RNA %
FEEGAL B« R R AR N 2% 7 R A, IR
i 22 I 24 i S I 2 T 0000 R g e B D AR A 0
P, B S BEROR OB R I T 25 5, 5 R
ARLLAEPRFFIEPE AT 5 T HAANEFPHIR) “ itk ” 32
o BRI SRR M4 &, BT et
PE e 4E 7 41 25 1) Hh sy 280l D e 55 A5UH T 51 22 AR
WG, N ER AL ) B A ] g R A E
R PO dx — R R T IR S IR B AP 5 -
Dhee SO T T /1, WO AR RAZBE B € [ i 5
PACIRAL T AT R R B8 A%

4 ANLEREFERBRZMF TN 89

B 7 EEWIHTAL, N TR AR (Rl &R B A
> AETIIAZ IR 2454 (1) 5% B B0 A0 A=) R 1 7 T
WRIELE HEAER, XL & HnT LU s B # Tk
W1, feRalpd—S .
4.1 FREMFUN

IR 7 H1 A e XS 25 3G RBEE o« A% TR
IR AR N )RS e M L R ) AR FH IS TR A e 2497
2, RNA 57 I 2 W VR M A R g e g 1
I, $& TR E R IR AT I — A%
O EbR, EAMOCRBNAMEAENEEN,
i A7 Az A s

NTRBHA, JUHZREZEIBAL, Hhi
PR AR T SRS AR AN AT R R TR . e
TEFU RNA P77, mRNA )R R 5 2y
B FN &5 #4) % YK <. RNAdegformer R 45 5 1 4%
1 (CNN) Ml Transformer H' [f] H 73 & 77 AL il (self-
attention), HEAZIHIIK mRNA J7 41w 1 ey A0 42 JR ik
M, DA E RGN I 7 SRS B T RNA (1) &
fRR 2R o IX ST A BT A5 BT B R ) Az
ANFEE B P A X33, AT ZE 7= B RS E 1Y mRNA &
WARIT 254 1 FLUOR TP 81 - 45 e
RNA ) "M =R a0 HASEVE B R EE . NU-
ResNet fl NUMO-ResNet 72 3£ T CNN (ResNet 2244 )
FIVRFE 57 218, BATTKE RNA 7 410 A0 Tt 1) — 2%
MG B9t 3D kg, H TIFA55E € RNA 7
HITE ik 25 R B mT g, X TR S i 7 Ay 2

Fase ik . BeJa, TREES S1IE T LSS 1 X
e M. 75 ASO Al siRNA #1, 5| NfL2EE
i (AN BRAC R S 4R 2'-O- FH LB SE ) 4R
T A% R T BT M 0 SRS . IR E IR (dn
ASOptimizer {87 F [ B 28 (X 2% ) AT DL 52 2] AN [
B A XS o R VERE YR R0, AT 4
AR RIEM T % PO Ak, — ST sIRNA £
R PSS 2 Al 20 R A MEAE i N R IR BT
MHE bRz — 7,

42 GREFEMTN

P A IR 25 ) G TR e AR 2 G EE S . AR
LR 51, R R EAEMG 1) RNA 505 A R e
J¥ (11 CpG) [) DNA, 1] Ge 5 240 i p (oA =05 52
& (PRRs, %1 TLR7/8. RIG-I. MDAS) ifl5l, fihik
A R [N, SRR TR OR g e AR
TERE T L TE A I 75 B0 FE 0 e f, (BAETRYT
PRSP H 3o A TR 119 S 8 M A
ARe FEREIER . BT AR 2 e ) B w4,
b, TR 42 1) G 2% S R R A R 25 P Ve v o )
KA —IF,

NTEREHA, RHRBREEIEM, EZR
294 G 2 R P T AT AR FE B HE SR BV ). — 5 T
BEA AT DL T T 5 270 O [ A e et . Jlad
> O A e B S g 0 EOE M A% R T S R,
F£F RNN B{ Transformer FA5 Y ] DL 5 5 3% 5 51
W I AELE ORI s B Y (s & UG 1)
A1), I 1PAL HBOE PRRs (A BEPE. 33X Fh 1500
A LA G 3@ i [ )RR s A 2B M SR A ok Bl 560X
sty U, 57, (ERERTENATY, TE
T G B 7= ) G R MR (o HT PR ), R ER
mRNA Zw )2 1K (REE IR F AR 40 i 5 1 # i
Ji ) BETS A AUBUE T 40 %)% N % . NeoaPred f&—
ANEEFNES, eiEd Wk -HLA B &)
GER, TR RN 25 RRAE R oF B4R 7R fo g S5 1
() “ PR Py DeepImmuno-CNN I B 4244
CNN Tl MHC- ik 5 & 0 1 S g2 %, i JEAXAY
T &5 &R 7, B 76 T8 B8 VP Ak S % BOE T
71 B0, ghAl, LRSI SR WBENLARAR . £ )2 B
#+ (MLP) #1 XGBoost 4 FH -4 4 L 995 2 >k Y5
PR G e SR AR R B2, X SR A B T ik B
AR T R R N PR T 51, N RE T
BE3R S . XIS PR T TR I R R R O AR
B5 HLA 5 7RI AR, RTHERCHKX
BAEYGERS T AR D, (HXE T MG
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& VS EABEEAK A . BEAh, TR A R A
NREFE -HLA 456, EFHFEFZE T 412k
(TCR) R LA K ik -HLA 8 &5 52 40 i % 1 52
PRIGAR EAE R B,

R COAH W2 T %% JE T, (HAH
SAIE T H RIS SA THT I AR A P PRI, T e A 0 PR B
R AE T T U R R (1 300 A B 5k = A 1 AR ) 2
BURIRHE . LA R 78 3 BAR M A R4 - —2kA
A 240 i S5 HR OO A% R T 41 15 5 1 TLR B0 340
JfL R R TSRS 5 55— 2Tk B I PR R H ) S
PEANREHSTE. AT, RAMSEIO AR R R —
T (EH & TLR7/8/9), Joik 4 Th [ Wik N & 24
(17 PRR 2% 5[] B 52 56 mh {7 P 1 A2 18 R 553 o o
BRI R KT, IR HE DA S e B sz g o i %, i
I R E A AR TE Wi LSS H, H 2 B R MR 2
SRR, BRERS. KRREEZEREK T,
45 “JP o - e RN 2 8] Y R SR 4% e DA
BEAk, AN FRIE 6 G R I e I EA G —, A%
TAMRE FRERER, HEETARFMFRER
BB LI, bR A & B E AR A — 5L
PEo XA T EOA [F) R B EH M DL RS, s i
B2 SRR LLTE fe 8 n] SER T BE /) . BE EEEE
2, RIS R — N B2 MEL)
TR ER, 5 HLA B8, BEA s s, 4
AW LB mRNA A0 22 A0 R0 % 45 1) 55 R 3R
By PR 30 E G L A 5 A 1) B () AT
T, AR R AR EEAS AT B G M I A 2 S BB 48
FHOGAE, T Jo v B IR Ff 4R G2 0 1 B SR B A, X
WP 7B AR FR AT A By EGH IR
TEEE Iz A RE .

DA G928 S TR 7 V27 SRR g b A7 AE
ERES. FT AT (motif) Y FIL I A L 3 H il
i =4 CpG. UG-rich fr B 8 poly(U) &5 A1 =y K
I A A VP Ay G i e 1, LR AR B T A
FE, AHTEIE R ) A R AR TE 1R B G 5 T B
WICIE AL B 4 S5 MO IS L . T 450 1)
BRI 22T RNA (1) 24504 5 VP4l 308 RIG-1
B, MDAS [ fetE, {H RNA 45 e K e 51
A e MR, B H ATE = B 1 8 AR A
R E E S Rl S BEBOE I BIAE, R4y A B4 it
FELIE () 52 P DA 55500 s 1) ity () 9 B 2 STASE R (A
Deeplmmuno-CNN) B& % M 7 51 o [H 3)) 2% 2] 5 44
X, TEIUA B 42 bod i v] DUSRAS 80 i 70 14
fig PO, BT 2 . eI SR R

JE,  HLME LR A8 IR PR Bk 22 A8 1 . St
H5 7 41 NeoaPred™" ] &y T H7 0 Ji G 328 5Lk 901,
& TsRE e N, (HEEH T siRNAL ASO
S S s RS TS . SRSk E, AFRTTES
ARG, B AT AT 5 — SRR BE 0% 4 T o i H Tt
R 25 1 o 2 TR A, TR S s v v v B DL TR
LR A Z MR, KGEF R ST
B 25 2 RS PEAS B A, F4 DL ST IR 50 E LARR £R
CIE

KRBT G 3% S T 1) S BEAE T B s Ay
EWANZ I EN k. B, FREMEEA VL
R E RIS, AUC T SN ARG5S,
R AL 2 PRR OGS . AN AR, & - M
2k B[R]l 72 B AN TR] 6o 2 200 B ST 1) s SRR AIE 5
IREh & A ML SR . AN R 22 EE ARSI AN A4 Y R
B2 YRR ™ IR AR B 2 3]
REWOE PN 4, AR 7 AR St 3
KR HIR, R, AR IR % 2
R AR Ty W), B S ALH] . GNN BT
SHAP [f# Rt TR, (A aeasTa 5 30 % s
(Bt 7 1 BREE MR AE B0 BB, RSB 2 R
R G IR 5N R SR WTAE 2R, AT DL B AR Y
2 ) B DR SR A, 491 G ) TS B (
E R LRI ) BIEE R HEWT « KR
PR R TR X R R, mAERais
THAHeME . HE— D, BT - eI IEAR R )
O] g, AFAR R AR S S BhiE PG B R R KT
BEATISAUE, 7550 B R 0 1 00 T B i R i A5 7Y
PERE

KIS, SR M TS A IR 25 itk
AP 2 —. Marm TR K2 SR
AR ME AR B, HERR IR T HE 2 B s Pl
AN S B 37 5 22 S () 2 B PR . BESEPL R AT
SE.OATHEST R s SR TN, T AR S
MU TS IR P 4 6, i 2 = RHMEHESN T bl
O ) () TR AE S, T TE AR SR AL TR 25T
RAEF R R IE o
4.3 ERE TN

WIARAZ IR 259 ( JU 2 siRNAL ASO. &R )
i Al 5 T R bR (38 R 8 1 RNA B8R
i) G54, TR K PR B Mo/ 5k H bR o T A
FAER (WRERUSE ), 5T PR AUE ST 80 %2 42 1 28 0%
W N TR R AR S R T4 B 7000 A% R
IR )RR R
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FETRM RNA- BeAA 2 &R J 7, XT 4
RNA /N 78OS Bo i, Tl H 4 a8 m L H
Pt . GerNA-Bind 52— JUATR B 7 = (geometric
deep learning) HE4¢, & GNN % RNA ]2 ity
GRS BRI S5 BEAT i, FFEEA W Z A1
MHHEAERGE, AR/ F i 81 45555 € RNA
TR IIREST o SRS SATSS IS T Ak fE Y

BT SCH,  UREE S IR T I 24 - B
P AH EAEF (DTI), 36046 A% 2 25 24 0 1) 7 7F SE A
H5EAREAZMMHEEER. i, A5
DeepLSTM ( K55 012 W 2% ) &5 A 25 A i ik ik
RRHE RN 2590 53 1 () 45 /4R SOR T DTIP.

X T 1 siRNA/ASO JAERLSE, T ik (26
3.2°1), BLASE ST FOUR FE 2 SRR v] LU I 43 #7 15
FURFAE #iJ 2% E Jo BlOR) AR B AR FH X 28 SR Tl
siRNA B ASO 5 HyB 78 [l fL e sk A 25 & FT ek
PNITE R S R R L e L A O S 2
4.4  FRIKIKFFN

X DA A Dy etk B T B AR IR R 254
( FZJE mRNA ST ), HE&mEamE
IR TRV R Al B A R AR o AE bR o HERF TR 45 72
IR 7 HI e F= AR ) RS &, N T 24k A
A IRE T, EERNREKFE—NE R
MERE g R, TR Z BRI, AF mRNA
MG SR EME . AR tE (sE 4.1 AT ). diife iy
En. BEEEGMEMR (X5 PRI R
FHOG, s 3.1 PRSI E RS 7 UTR fifk ), BA
JLA] RE I G R B (U E 4.2 FTRTIR ) 6B R A
Saj=A

NTERHA, NHEREEIBA, FHHG
RS 2 AT B IR BRI L R R T,
FEFIIN 2 19 ot I8 7K J7 T s BRI 7. X2
TR 308 ) R O FIASE 1) Ty e P S 6 5 4 a3 AT I
B AL £ K B AN [H mRNA 731 (599 /2 UTR A4
T DX AR A4 ) B JHEXoF I 2 1 7 e PR i 5 e Rk i 4
Y5, BCE B FH A% BE AR B (ribosome profiling) 4
SR TR B8R . I 2% ST R BIREAE (G0 RS {8
R R FHIRF. TR s ) 50ee
BB AT R OCEE, RS SRR R X
Bt mRNA 791 (23898 1 AT F

il fn, 34 F ) Optimus 5-Prime 452 7 ¥,
EARFEHFWIHLLR S'UTR, HEZOREITE
F R TN STUTR 7515 B R0 (3T 5 A 3%
KB ) M. [FFF, RiboDecode HEZE UV 45 4%

J5£ 2 SRR R AR S 2R, B AR B A I Tt
BEAESEARBEINELT TS i, %
LinearDesign" X Ff #8 % [7] i 41t 4k B e 1 A 1 1
fEH MRS, BT B FI7E S50 R I H B = 1
EAFREE, WAEEIE 7 HREBES R
IEACER R BT GE /1. XEHF N TR REH AN
FIB KT TR, RetgAa St S0 7N AR
KM 1 23 ) v B A i B AT B AR AR (R &
(1) mRNA {5 2540, Mg A A it 78 I 42 =
h&,

5 ALERERARBAELINEE RGN

A R AE R P AL TR 25 W ik A S ) S o
AT o BT AR I T A S R (R0 78 47 LA
Gy AR ), I T A B IS AR R IR 2
A B U S B i P N TR AR R R IE B
FOR R 22 b B T AIX B30 RS0, 45 2 i i
YK BRL (LNP),

51 LNP#BZXZRS%

LNP & H Al R F et B2 %R
TRIB AR, IR & siRNA 254 ( 4 Onpattro)
F1 mRNA # 1 ( 41 #% % /BioNTech F1 Moderna {]
COVID-19 % T ) 15 LA sz 3 i S fg IR 3 2 — 190,
LNP 385 HH VU fb =5 2 o 2 - ml F 5 PH 51 i i
(ionizable cationic lipid). AH[EEE. 4HENNE)H (helper
lipid) 15 2, — B AL JIE 5T (PEGylated lipid). 1,
A LB IR TR AL D g, B DT AR R I A IR A BT T
TR CVELEALIR,  JEAE SN o 35 Bhiz e Re ik

£ 58 LNP (1) FF R M T 28 36 R0 K & 1A sk At 1
WA RS AR, T AL RERRIEEEY, IE
TENNE X — b FE, T HARIUAE AR B4k ks 131 5
i 1B 1) AL L FH H o — AN BB U 1) 2 R 2l R
T EPE . Wang & M s T — AN R I R,
AT BT 2 I R B 2 S RS Y 4 03] T A% i i 5 4y
TR R B AL 2 M BT (W pK,) A mRNA i
B G, B ARSI E T — M
2000 J3 AP LE g BT 45 K i KDL . I AT 3RS 1)
CHRR - VAT IEARIEIR, BN SN T A R
AR (JUTFP) AL JRE B I TOAEIE /> T 45
FIR, AL BT 2 Flopn 226 R 7E /D BROBE8Y o 1)
mRNA %R B ER T LM MC3 R, 22
i 35 A HE SM-102 Jlg it X I TAEUE] T AL
T R HIASE R 0L 075 126 FH 5 3043 oo 1k R st ik AL D T
FramRE A MY EER, BALRIRME T e maT
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R, 7R T IS 7 B IR S RHIE 5 midik
MEZRCE, TS E st 1.

Iy /N R N & LNP EL U7 A e 0 T 5
fit4t.c AGILE (accelerated generative inverse design of
lipid nanoparticles with experiments) ~ & #& X J5 [ 1
—AMT, ERREY S SmilE A SIS
FARSMT A 25 A U AGILE ) IR B 4 48 X 4%
X, B AN TR 25 7 Jig 5 (1) LNP 2 J7 i35 47 44 Ah 388 38 2%
HEPE T %1 G 1A SRR AU BRI AR I AN
[ () E A2 P 2R T AR, AT SN, “ 4 28 7Y
SERIAL” 1 LNP & it. B 78 FI AR AGILE R
BV IR PRAL T — R FH T mRNA 3835 1) LNP, K
IAN[R) 40 0 28 %65 i JoT 45 K 1l SE A7 AE B 10 22 57 I
B T D9y i 2H 23 B i 8 Y A A 3 18 B A4 1 T AT
PR, I T R AL IR T 40 JE 2 HIE LA 2 (4
fili, S dinsg ) Ao E R L,

BeAh, AT WA T 50 LNP A N D% A
HF 50 ) AL 3% 2 ST R (an B AL AR ARk XGBoost.
DU AL AL ) 25 & LNP (G 77 4 (s 5T B4 )
il 2 2K (IR S AT ) B RO ERAL A S
ARFF, KA siRNA-LNP 5 mRNA-LNP 7£ {4 Py [f]
S R TR K 3 B T IR K B O i AR R
Al LAAE S A 70N A4 LNP [ e 5 F AR 7= T2,
ASRAT B A 0 A N 245 R0 22 4
52 Eft#hrEE B IRMAMLL G A

Bx 7 LNP, W70 GORERR R HA KA A% IR
BIREAE, WM IKEAR & THUKRRL, AhuAE,
993 5 £ BURE (virus-like particles, VLPs) %5, S48 H
BT AT AEIX LL 3 AR P04 1 i B AR BE T LNP AT g IS
AN, BB HFRFEE R, Hldss: > J7% 0T B
I F T T e 2 T A R AORE ) A A TR 24 ) 346 15 5
A E e, RALT LNP TR IR BT, AL
AL B R AR RDRE, Bl st oA R
(AR AR BRI E . RIRES AR ) KT
BERAEWERZIK. LR, AL AU A rERe, 8
R S BR T AS [F AR (WA F RS 2 AR A
R BT ) SRS G R TERIgK
HEWN RS S ETE . A0 MU DL R AR N 73
AT PR, R A 5 A I T S ) A (A
PUR B TEBCIRS N T ) RSEBLAH 2 B4 Ry
FtEEsIx, AL DB AE I Bc ik, BHRBLihEk
e AL RO AR S S BRI T 50 5, AL
AT BEZ IS, FRE AL (A5, &
W) AR TH) B s ke ok, IR 5

RITIMIAERY, B M I A% 2 SR A B B 6 10
AR RGE (40 LNP) _F 2 B RR B T Hds b
IR A R GE . BRGNS X e H A 2 A 1) R A AL
N RGP ST i A 2, (IR JRE Y
LNP [R5 AR . il X S B AR A
JEANAH R EE FAER, AT LATUL AT R 48 3L e it A
DEA Hh P R B L) £

6 ANTEREARBRAMLTPRIBERS BRI

RN TR AREXLR A IS T 5%
kR, ARG AT T I — 2 51 Pk 5 A [ PR
T EAEACRI B e M A k. TSR, B
RN TR REHARGE Z M7k (WL gblas 2],
DREE2E 2] AL R SE ), (H 2 AT A0k i I 1) 32
PR P AEIR B S IR N b, X BRI
VR FE 2 2] OO 29 ) v A B AN B B
JIH AT HiA
6.1 HEHHRS=FRELIEN R

TR BE 27 SR B 1 REAE AR AR BT AR T~ R
i, i E AR BAR AT I 2R, SR, FEAXTRYY
PIATIE,  FREC AR IR HRHE 1 AR AR B ELRER Y
—AFE SRR EA L. TN AR
BB, V2R G SEI0 KR A2 ) 98
BoNo #lan, HFIIZk ASO %7 T A5 28 (1 40 4
AN siRNA,  H W 5 B T4 e 5= R sl 2
W, ER R RNA Z4E45 403 . RNA- Ny F
FHEARE BRI B PO S — AN 9% )
B o = 5 R o AR SIS B A AT AR AR e M (R
ER NG = N kS5 2 o N b K . A8
AL, CRFMEAE T REFAE ISt 7, RIS
0 m) T4 BHAPE 25 R (A A S8 &), T
FIPE2E AR D, X Re S B A Al T AR M
AR o RS e F o A P R — 50 AR S 1)
R o IR LEGAR i 5 PR ) T AR R Ak R D AT SR
AT AL N TR R Bz — P
6.2 EEWFREREMEESIGKRESE

VFZ IR S B R ) o &6 F B2 2% AR (i
IREEARZ 2% . Transformer), 5 #EHEIEAN “ 2467,
BV T P P S R SR I R AN B, o AR 1,
X PR = AW 2 DL R R — A R A . R
B AY 25 H P 25 2R (A A 7 8 e B ),
T AN BE AP L T AR I ( R A2 3 71 R A B 45 A A
OB R ), BTN G HE LN AR SR A B I AR )
FAREGBE TR, X DB AR A P X gk —
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ARG R . 7R 29I R IX — AR 40U, B
F 24340 I AE P AL o) R0 AR 250 0000 1) T 22 o0 L
i Z W] fRRE M ] e 2 FELAS AL & T I I 25 ) 3R 15
W HLA (0 FDA) (v Al bR 1 26 i 52 B
BRI AR AT iR N T2 g (explainable AL, XAI) £
AR CanyE R SINLE AT FRIE S P Sr . SHAP
AT REFSLREE ) HHRE ™, (AEAYT
PIMEEMFEZ RPN, SEMAEIEAEXHA]
FEMRREA SR — kg
63 IERA. NEHRSMICHERR

WIERR TR 2 SR (JE L2 24T Transformer
B GNN (B, DL R Ak P RS K 40 4R g B Y )
W F AR KR E R, W AP T (GPU)
BTk B AL BT (TPU) 863, XAk 1 & A
JRASFIRERE s 1o B B TE S RAS PR 1) T A3 (1w K
PEo [RII, YIZRIS (A A] R BN, L/ 21
REZRJUAANGE, XIS T AT R AEAREE .
WAk, SR 52— AR AL 1)
TR AR R QR R R S A (n2E ) EF L JR L
TS ) AR TR R E I SRR AR, kP
Y T A SR
6.4 1REZHSEHED)

UL R IR B 2 2 R DL ) . 24 I SRt
A BRBE A T 280, BRI S “idME” g%
e R e P R AT R, AN A 5 2T B Z )
M, FEEMAENSSE ERIVRL, (HAERT.
AW ) E s IR S B N 7 5 ) AR
2 52 MKMRZARE Pk . JF R el
FEA FHAE S ARV AT (WA R 240 i S 7
Ykt ) AR G: A AN [F] S 5 e B T # e A
TAFMBAR (BPERA RIFZARETT ) & — D EHEER
Hr P B ATVF 2 8] 58 7R RR 5 (K 400 42 AT
% ERIRLF. N T S W& MR iz Ak fe
R IENAE AR 28 IR Fds 3 o DL ik
THEE B R AR Y R4
6.5 EMRGEHRM

YT E) AL BB AT = T B R 7+ A 5
PR 5 BAE T K R G (AR A2 56 ) AT o SR T
TR ZJAEAR N ) e 4 U 2 BN FL 2R I AR 2%
GEPR ZR RN, B HEIRAC oAt L AR HEHE (absorption,
distribution, metabolism and excretion, ADME), P\
S5RN - FRIMEAER . MRNESH. RGN
L MEBEE S E RSN KX RGZH
RANBG RN P A, FELHE = 2

g s R iR AR B . X BB A S
SR SKEPR 252 R A] BEAFAE 220, R AT AT
PR R 2 vt s ) 5L — FE Pk

7 REKEBSBENRTE

REAFERRR, N TR B (Rl 2 IREY )
54t RE e KB, KRIVER
BEAELUT J7 In HUfS B 2k .

71 ZEFRREREZF IS LUERNEEETT

AR BTG B E A AR H R R A 2
SRS EHRAS . RUWEEA S A%
2 Y AR (multi-omics) . VB 2 SRR HL 4%
PR PR AL AR RE S, R 2R T
RIZRBR B R0 B RS HE R 25 HE 5, IR
TSRS 25 [N 7, g5 A B AR, AL
A AL AN PR E R I, NS
FENPEAG AL IR 250 (1T, At %o o 5 i 8 AR B
BF BT S ) SRHERT TR LS Y,
72 EZFHFBERERSAIERTLHIR

NT MR CRBAE” R, F R SRR S
AT AR R TR S RATE 5 7 ) B IXATRE M
BT N AR AT R RE (SR R, B an 45 G v s ST L
BN AR . R, 7 A S
XA AR, $RfEnEE, BHAE UHFEFE. KRR
A ALY, ] Qe B T AR s 1) & G H s
IRBH TR BE 2 ST ARAE A ot — AN AT Sty 1 B
W6 AR 5T 2 MR B 0, 48] B RS 1) )| e
BRI 57 e () P 2%, (R FF AN T AT ff e M i s
HHIPRERFIHLIE B,

7.3 MEAZBR IRV E R S TN G A

ALK IR IR AV @AY 17 “AMERAL”
AR, BT R MR E R A, Sl BIRE
B AR EY), ARG EIZ A Hir. o
g6, BR PABR BT AR R AR B R R IR R R
SIRNA/ASO/gRNA %1 0, Moy, H58 fg i% 5 )
AN R 8 A TR 25 WD I BUR A L T AR AR RIAE
F T IR, AT AT DAARAR BT AN A 2B 3 25 245 77
FARILTRNE, XM RS SHELS T LR 1B YT
AU fr S 7,

74 BI3EESIHTEFEEMNERER

AR R B 259 % IR SE DDA T B Ak . AUML
BAG SN BT & (AT el ES . i
IEFNMR ) B R, TR IE AR« BTt - A -
MR - 22217 (design-build-test-learn, DBTL) 13k &
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gi 2P, xR B kT G R LU R D (R R A
TR AT S50 ANEHE 2 A, RO A% R 244 B
% RGN R IR AL RE
7.5 RNAZEE)/ N FAYREERE R FRIAIL
AL [ R K 7 e 1A% I A O 1) LAt AT gk . 76
RNA ¥ [a) /N5y F 250 7T, RNA IE BB R R
BN T2 5 . AL BRI T 5525
Pt Al GNN, BLEFI RNA S50, R0 /N
S FEEA AR IR IE AL RNA B /N 77
D5 R AE SEAE R U0 MR, AT RN g R
4t (W1 CRISPR-Cas) N H CAHY ) 2, HIEZE
M FE B E R R RIS RNA (gRNA)!Y,
TIN5 (8] 2 A ) RO A 25 R (A RIVEE B E vs JE
[ 5 A i 42 )UY, TP AR T i s MY, DA R
AL R i R G ik ak vk U, B L R 9 4T
ENIGIR, AL 7E SRS HEPE A 22 AP Ak 77 TH (1
FH ¥ 58 o™ 2

8 ZHip

NTARE, HNHRREEIHA, ELRIFTR
A7 BE I E R E LR AR e . @
I 5RO HE A3 R T e /), RFE
= )RR BB 0N 03 v A% e 25 W0 i T I
(T 22 M2, HE BT 1% 404 A 22 56 X A P Tl i A 2 ]
B IR B EAE R AR . REER RG L T
N LR BEF RIEL R 259 (135 mRNA. siRNA,
ASO. EELREE ) FPA BT Sk, SCEEME R (Fa
SEME. REIRME. B YE. FIEKCT ) T LL K%
KRG (A2 LNP) (A S 7 I N . K
BIFRRRBIERE, N TERER AR GE B3 1w
WP BRI R A, R RIPERE R, &
LARNNEEZY), B2 e F L .

SR, FRATTAH L 2007 R A VR 3 24 i IR T 2 )
N T TG PRI B R 5 e PR o 5 A i v 5 o i )
B, AR ARBEEAN . m B R A AR
Iz A BE 77 A B nfil A RO G R A R G R &=
&, AR BRAFRRE LI O M R, v IR R g T
PSRN B E AR, BRI RES AL, W
BE R RIASE R B w5 o R (O 2 . R B AT SE I AT A
FEVE 795, DARCOKE AT B Y B 2% N\ 52 56 50 4IF

JREER K, Al 51X TR 245 W) 48 1Y) 45 6 1% 52 n
RN 2 2 125088 B 8 SR HE B MRS T
BRIT R s T 4 HOT R R AL BB K BN A

FN R ITF s At 51t E-F 5 LR
FER R IR R R 5 [FIIE, AT O 7E RNA #EjH
INGY T DR g i S T D U T OB A
ATCATRL, TR FE 2 SRR B E N IR 11, 5140
IR 2R R N— DN R RS A ik
JTHVHIEAR . KA E 2 AL GBI & T 1 8%
BRI VE I, BBt LG e
KPR A, X IEEH 2 N T relit e

VIR 255 T i 245 R B B N O AT e —
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