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Abstract: Drug target discovery represents a fundamental and pivotal stage in modern drug development. However,
traditional methods such as biochemical screening and omics analysis are limited by their high complexity and cost.

With the rapid advancement of artificial intelligence large language models, new opportunities have emerged in
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drug target discovery. In the process of identifying drug targets, natural language models that learn human language

can comprehensively analyze literature and extract key biological pathways and targets related to diseases. By

learning the "language" of biology, genomics large language models have enhanced the ability to predict pathogenic

variants and gene expression; transcriptomics large language models can systematically construct gene regulatory

networks; proteomics large language models exhibit great potential in predicting protein structure, function, and

interactions; single-cell multi-omics large language models integrate information from various omics technologies.

These large language models provide abundant biological information for drug target discovery, accelerating the

process of target identification and drug development. This review summarizes the application of large language

models in drug target discovery and discusses the challenges in this field.
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