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Abstract: Prediction and simulation of cellular states based on the representational capacity of cellular foundation
models has emerged as a new research paradigm in contemporary life sciences. This approach leverages artificial
intelligence and large-scale omics datasets to extract cellular characteristics and decode regulatory network, but

challenges remain in the design and implementation of foundation models. This review systematically summarizes
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key advances in the field of cellular foundation models. According to the data types used for model construction, we

introduce representative models and modeling strategies based on single-cell omics, image-based omics, and cross-

modal models. We then outline the major challenges in the development of cellular foundation models, including

issues related to dataset construction, model architecture design, and model interpretability. Finally, we discuss

future directions from multiple perspectives, with the goal of promoting the development of cellular foundation

models that span species, modalities, and scales, thereby providing support for basic biological research and

innovation in related industries.

Key words: cellular foundation models; single-cell omics; cell embedding; perturbation prediction; multimodal

integration; deep learning

YR M2 A A IR ARG, AT A MR D RE S AR
FAMLE, 2B AR iy RGO . (R4 “IE
SIS TIARRSIRAL R LG R, BB R
FOARFAE S LR A . (HAE, BT 40 R A 4% I 25 1)
R, A R G AR AT H B AT 0t S ER E 5E
(RURE RS SRS 7 B R o BREIRSEES " TAE AL,
Bt —E 2R E S E A R4
(Virtual cell)” #5584,  F DASTLLAT RO 4H Ha 76 45 58 2%
R AR ERES, JCHOR XA B . L 2
P2 22 BT BR A 7 FR B BE LA, e 2 i 2D %
S [R] 22 T B R A PR S e B M Zh RE LA 7.
AR 25 R A T T B, ME LIRS #E 20) ) G vy 7L s ) 5
BARMM RGBT N

Ak, NTRBERARREERM, AP
ARAPOE RS, JOH A 20 f 21 22 50 2 e B
K, YH PR AL R R AL TR L. AR
gh a7 T 40y AL Al A Y (Cellular foundation
models) fi# FE I T 40 A R A5 1X — 428 it 7 2
211 Hf 5 bt A TR 2 i ik T 2 A Al RS s )1
IR FE 5 SRR, B AR5 ) 20 M I i8R AEFIs AT
M. MR RIIHESE, WTRIRI B RES HE
(Natural language processing, NLP) A5 1) K 1F 5 5
B, RIES BN DOEE % )i & AR H “ii ot
(Token)” Fl “#)F (Sentence)” 2 [A] i 2 A 1) A1l
TP, RARIINE S MBS 52
oL, fEAH LRI, T DURE AR N R R
HIREAEY R FHONE SRR “iqon”, #
2 B AE AR A I Z R BRSO “B) 7. AR AT
1 I 0 B A AR AT B R ), RS R

FaR WAL WIS Ui TETR 7, AT S
S MOIRAS IR AR . ARADL 5 F0)

N[A]F AlphaFold™ 45 & F 5 — ¢ 2 AT 55 1)
N RERRY, A 40 o S At A ik >R Tl
S5 + W7 RSN N P SN o I SRS B M
RETHRZEIE, 8 H B T3 AT B2k (Pre-
training), FFLERCIEEAN 45 & /b 2 bR i SodE 3E 47 i
] (Fine-tuning), PAFETHIERF @A H IR, &
SRR PRI SR B AL, B0 AT 20 M B mb AR 2 SO ] T
Evo'™ . ESM™ ™ &5 DL 4 yfi N 1 43 - R B il
B (R 1), 40 AR 7 50 % 4 DL Re g AR 4
PR ARSI e 4R Jaan N, 451 P i A e 2
1 B S Pl BT T A RRAE I e 2 FE R R, K
FERMBAH 2 L K FoR 7 TR, IR 22457
ZRAHAE b IR N eI AT E R B
HANEIE T TN THARE, AR AHOM BEA 1 A
P R NE SR, 3 — R A 76 4 L T 78 A% SR
MR- ke v, A BRI - BRI
AR IRANTE, AIRBE R ED S R BT 13
AT, EUCIEAL B, @l — PR s 2 HREE R,
X 4RI O T R T R RRE AT G — R, “ N LR RE
iz #9141 i (Artificial intelligence virtual cell, AIVC)”
N v V5 e 1R

SRR XS 4 L P R PR 20 B A, 4 R Tt A
AL mEA RS AR 25T R I 2 A~ 5
WA B EEER PP, AR A, 40t
fili A2 R AV R 8l ik & / /D FE R (Zero/few-shot) 2
SRV LT 2R R R A B, IR TE B
I HOE AR T, BT 5 B 4 AR 2SR B

=1 D FREKRTMEEMRE

SRR LAY
DNA Evo% %™, DNABERT%7%™”. Nucleotide Transformer"”. HyenaDNA™. Caduceus"”. Grover’
RNA RNA-FM", SpliceBERT"”', RINALMo"", ERNIE-RNA""

HER

ESMZ% ProtTrans"®, Ankh". ProGen2™"




123

SYEe, 5. AR A U R 1551

R ERILS S Liie, S 2ELEHIES
Y AT DR ST EALR . FERRAL R S 5 25
R, AL RS R I 2D A N R B RE AU
P s = B B AT REMEE TH ML AP AL B [
B 1 RO B2 Y AL BE A BT AR i 2H 2 (e sk
M. RWHEARH) BRGIER, BNZGY
SIS 1 S5 S 5 2L, AT DA 4 i Y S
06 PR 22 Y0 FEL R FRARI A A o Ik, 5 A [al 4l
I E R SRR, B RSO TSR
A WL A AT b T8 Gl A 58 14 S 1 5 40 T 38 TR
2%, JURSHEEIT I )R 5 AR ST T S
SERRBER AL AR O A R IR — RN U
WEFUAE SRy, AR SC 2R Gbn 350 200 L R i A R ) 7 o
HREERR, BN HAZ OB, XRS5 1A
AT REEL

1 REEMRAMMRER

ALRR E OGRS - iR ZEA Y
S0 LAY, RIPE TR FE PP 22 I 4% B R B R AR
T 25 40 B 5 BE, DL =) ] V2 4k 1) 4 i SR AR
(Embedding). MR EAG BRI AT, REAT
DLid i i B/ /DR A ) A5 D AR OE G 2 R
RS, Wl DR A& ERARE, AR
BN, USSR B A o R,
il A e R NTE T

N T S SRAR R IR SR AL BE RN AR A 2 0T AR A
W T AT K 2 P W A9 22 e 58 FaR 5 N4
FER AR A e BT — 28 UL SR 0 KR S
AR, G DR 2 X 48 RN R 3 J5RH LA F IR 4%,
EATARBR R T o T B 7R 4 5 3 e B s
B, HAN, IR A MRS T hREE R SR, W
FERIAARR G Tl BB B, R T3 E
35 LI SR ThRE s B . a7 RS A
GBS RIS b, = 24 5 DR 2H 4 ik ]
B R ISR O &R, A B AR A A i
P u S IR R 2 R K ARA BAE A . B4, 85
VI B AR S AN A TR IR S B AR B A T 42
FHERIZ ARE J1 B I e g5 b iR R LR
T B A By i O\ T N 4T 5 et A 2R () R 2 ST HE R,
A B T 75 5008 i 1R 1 0L R 3RS TE AR R
fiE, EREEEH PR B ) A G B

TR TN SR BB A FH ) RS, A
TR RECA] 4y A 2 22 A BEUR B A RS B
RARER (I ). Hidr, 20 i 2H 2 A TR P {5 A 7Y

Xof LR SR T R B ARE AR, P AR i A 2R U 75 B2
SN R B85 2R £ 58— AL 22 W o I il 5 AR
Fro AERGH S =K, i EPERACR AR Y
LBt i
1.1 HppiASFEANREY

YA B il R T B, MWL e
HEBA. FWAH ABHEZAZ O s ZH
LA B AT B R Za i B, o e S Atk AR R T
T, WEMNERZ A AIRAS . IR R
M, BTSRRI BA AN B Uy
(REYSE A2/~ RS oL et i B2 il Rt D NE prin
i&jﬂ%% i,F_lJ‘ [43-45] 3
L11 s BER AR

AN i % 520 (Single-cell RNA-seq, scRNA-seq)
e BT BRI R Bt i IR S i A 2
KA, Wt R BT SCAHM Sy SR 4 i AR FOR
BRI L —. % HIRTE S A0 P U FE AL 5 1Y
TWAHE R, BT 2ok A 0 i e s LA o
N R BN FE PR SR I 2R 5 A7 (Token), R H
Transformer %5 42 4 ™ 4b 30 br 2 i e 20 40, @
o B ST Y B A PR I R IA R AU S R
() “HESRABEE”, AN SEIRT A D04 M IR 785 PR HE BT -
R, 5 BHUN HRE S FHIAE, scRNA-seq 1
P BEAR B O IE LR HUE, X6 23 g 77 RIS L
AR TSR

B MR E M TAEZ — /& seBERT™. %A 7!
K:F BERT (Bidirectional encoder representations from
transformers) X [f] 4 A 2% 45 1) 1%, 3@ HE AL B 5
s BEAT B I ZR. NG A BERT 2844, scBERT
Xof TR ) R PR R HEAT B U 0 A, R ILIR N
FAh “IER” KB EGR R . BERT KA I
TIAER, EH TSR R AR N AT SS, H
X A DL DR 2 (10 £ R R 0 70 AR R A PR

GeneFormer™" |45 43 A 41 il b 25 [H] 1 46 3% 3%
AE, HOZEER B FEA T P R IR E AT A
—Ak, R VA — A S5 AR 2 ik B FE R HE
DAHE T Ji5 F 6 DR 51 26 20 1 40 FDIR S o 3 b ik DR HE
TE—EREE L B BORME S T AR E, BT
AR 7 1578 22 %ot 240 L n N R IR . seGPTRY SR
SREIVS e oA AP U RS 5% ) 8 i v S | S o
K ST N 3L R B A B X IE SR R IAAE,
scGPT SKH] “IEEH RN + RILEHN” S
GmhtEmg, DU N AE TR R 55

B J5 H I A — R H R Y ] A B KRS T ki



1552

374

S (BE. Peak, FER)

f_’.

MEAFHIE (R, ®0. ERRES)
M aE

FRAFER

¥ it

SFEERE INREERSIEN
GRNs, PPIs GO, fA8iNs
BRABEN MASRTEMER
HI-C, =HIGIMER RLRNH, FIIRTIE
& _9;/ )¢KL %
FiE) SRS HFEN
WRE, BRXR BUSTEN, EAREH

SEPFIRHLR

.

B i ETllgMRE

4
N

HRFRAEER

4
AR L2

HRRERIRX LR
MRS EE
Cell 1: Gene 1, Gene 2, ..., Gene

Cell 2: Gene 6, Gene 9, ..., Gene

z zz

Cell M: Gene 3, Gene 2, ..., Gene

Cell N: Gene 7, Gene 2, ..., Gene N, ...

TR +

TP53 is a regulatory transcription factor protein
that is often mutated in human cancers, ..., TP53
orthologs have been identified in most mammals
for which complete genome data are available.

HEES

TiFES
N
g ¢
EHitFHR BEET
A
o &
i SIS
RIFERIS

AR TR AR B R B 0 EER S EER IR T 1. () RS EHEN . B SCRR R A 2 MR S,
BN PR 2 B G e e e . R R TSRS ) L8 2 8] 5 TR A5 R AAE P 200 P 50 S B8040 ff 4 € 52 7k
KGR 2 R, LRI SCAS R IR 1 40 I 5 A5 (g 2 R D e B R A2 45 BN B SRS 5 k) (b) BV~ 5B 5k
Rl A IR TR, IR AR AT UG NEY AR AR, B0 7 EAE M4 (WGRNs. PPIs). ThAEER 5if X
(INGO. 55iEEK). FEFALH(WHI-C. FEHH=LEIR IS5 B SRTIEERARGRKER). SRSEEZE LU
Loy TR BN S EA RS ). () BIZR S RAL: 2] BRI A _E R R HURETE b Bl 5 S 50 AR AT 1 M 01
gk, PR R M AN MRS RS U RGE . A B A RS S e () FUrESS SR 25 M40 IR AL ] IE 1 2 Fh T A

55 (a2 7

IRTIN

(1 B s BUR R R 5 10x Genomics k).
Bl EEAEREERER N A=

LA YR

WIEIR R HEWT . BRI EE), S AMRBERERRIIT . AEHELSST . 2990 ik b A2 & A SR B U



123

SYEe, 5. AR A U R 1553

SRR A ISR SRy R E . B, scFoundation™
£ 5000 T4 EBEAT TSR, S8R 114 ; Gene-
Compass™ T L0 L $0% 1.2 12 5 CellFM™ Fiii)l
AR ECN 1L, ZEETR 810 . ML HIALY K,
FAE PRSI RIANZ AL RE T B33 T,
PR EL 2 JE I AR AR BE /7. GeneCompass
Z R RS B B EHR A F, GIANEY
SV, fERERLTIOI A A B AUK I S TS,
MHETE 1 A2 L 2 T AT AR RN 22k
M - RSB S W ZR, LA 2] Wb e fk
SEIE SRR

1E P 5h 25k B TR 5 T, BT () STATER® Al
Tahoe-x 1" ) 5] N & [ THPIR S ity H#%
“PHHAMRE + B R 77 B “HIANERE” B
Wb, AEHAEE / ADREARGIN BN SO TIIAE 55
PEREHR I B 2R PESL 28 . STATE i ik fit 1 720 24 &
6 124, Tahoe-x1 ZH &L 30 12, FFAETIIIZR
BBt gl N2 g i gmids, SCIZves 55 4n i fix
ANBIRER G, EAHTATSS PRI EA e, X
PRI RAE — 8 R B b B AR B p 3l i A A Tt
B 71, IE AIVC BE TR RE .

B 1 J& T Transformer ZEA4 AR Y, 1T 1] %
HIR 45 25 [A]) A 7 (State space models, SSMs), 4 Jill
& Mamba ZEAE B, Sy o K AR B 200 it B4l 2 3t
THHIALA . Mamba @it 5] Nk VRIS, £
PREFLRMETH BB 2 P2 1 R IN A Rem SRR A, {3
FL BN 12y R A B A I DR 2 O ] P R B AN SR R 3R A
Bl LT 2R ) GeneMamba £ B 6135 1 4
FIN T XA Mamba 25, DL 5 (K 2H A 1 X0
R SO . 7RSI N B ., GeneMamba ¥YH T
HETHT B B RS, (NGB ES T T
— A3 R 0 - 2 R B B O, NI AR 2% 2] 4
JHZRAE B RN s Ak 1 BE DRI TR (R AR - DhRE IR &R, 7
ZROKEES . AR ERE S I PR G ot e
T FERE . seMamba®! T#E—25#£2 T Mamba
TE AL HE R 5 24 5 46 200 B g 7, EXT B % RNA
Ml /¥ (snRNA-seq), scMamba $# 7 1 i A8 & [K] i it
FIMEG IR, @I 4 VI BC A48 R g BT e m AR A
Bl (R 2H X 380k A7 S 65, R XL Mamba A5 54
e LA A RO . XM AMUEREE T
B AE R, AR MR AT R XA Al
AR AT AN AT 55 T 2 B H XA o 2 B e e 7 A
H5E KNS, UER T SSM ZEMIfEM B R AR A2
DR A RUPEE P 200 i SR At 28 7 v 1) 5 KT 7T

B 7 4EH BRI, HdE R oR T R e et
2 ¢ it BE ik ABE 2R At ok 7T ) LK . Cell2Sentence
(C28)™ R T — Rkt s 4 i e dis E & i B
T EARE S R 68 SR E o« fERIAEE = 1,
C2S H 4 HUE Y R IA B e AL RIE 5 1A
KALFR I SCAR SR . AERRISEM I, C2S B
TR 2Rt (38 F B 2815 5 KRG 5 B4 (10 GPT-2.
LLaMA %5 ), HHIX LM fEd 8 HRE S A b
SIS B 5K bR SRR AR AN AR BGCRE TR SR A 4 R T
T TENUEN A, C2S I 1R A i RE /1,
AL BEARYE B SRR 5 P27 A2 BT & 05 8 40 P 2R B
TEF R AU, 10 REPAT 40 M S B R S5 AT 55 o
THELNZ, ERE B IR 4 M A ) R
) EARIE 5 SO S, O AR I 250 Hh B 32 X
EVEERR SR T MR RIT R
112 R FERE Y

LY i 2 PR T S G A 5T (Single-cell assay
for transposase-accessible chromatin with high-throughput
sequencing, scATAC-seq) 5 S W 1 41 ifd J2 10 7 G
T TFBOIRAS , B SR M i ) A 28 A Y,
TR A I SR AE A Y W] T 5 o i =R 5 oo 1
(Cis-regulatory elements, CREs) 5 ¥ 5% ;=¥ 2 6] 1]
VIS, R TR e R R A
DU S ARG [X 584 3 v 4 B,

R 3 o B4 A 3R A R DR ZH K T E R IRX 3
(Peak) FITfi K i FKiH 544, EpiFoundation®™ Al
EpiAgent”” {U{# ¥ JEZ X8, EpiFoundation ZE4i A
W] NGt AR i N LABR I peak RGN BAS B
ChromFound #5251 % 5 F LU ) sk s, e FH e £ 44
BN DB RN R AR R AN RS A] P
RN FIAE N R 4 N 5 EpiAgent JU) K FH 1] 4l -
TSRS (Term frequency-inverse document frequency,
TF-IDF) J77%, %HEik CRE (Candidate cis-regulatory
elements, cCREs) 4% 41 f 8 B 45 S AT HE 7, Hi
THINKBERR S, AR AT T = A E R E. GET
B BRE 5 — A, KRR A 2~4 Mb
] 5 7 T, DA A e S DR 26 1 P 40 R G £ )5
TR R EE NN &, 2R R
b EE AT R

{ERL R B0H) |, EpiFoundation K FH 6 JZ XA
9w D 28 ) Transformer 4514, T ZfF55 N “peak-
FEIXFFF 7, RIUFFH 401 scATAC-seq 04 Tl —
EAHIEC XS scRNA-seq £0¥5, MM 2% 2] peak 5 %
Rz A R4 0% & o AR AT FH T4 B S 2 v A At



1554 G TR

374

AL IE, FFAERMIME T 3R IE B, GET N
12 JZAUH 9 23 1) Transformer, FIZATS N “HE
A DX P 7 - LM 25 i DR AH X 3, AR BR3¢
THO FRFAE, A7 o) e sl 189% Jo CRE LG &
GET A] H TR A Pl . Z A A U 4E = DNA
FFAN RSN, DU ST - BT
YEF &% 3 K 7 ¥ [F] /E . EpiAgent 24 18 JZ BERT
AR ai i, TIGRAE S G « 400 -cCRE X 5%
GO EM UL B &, T SCRE RN
21 g 28 R 3R AP B R8Pl .- ChromFound K H
REZEM, 456 1 H T4 R s A & 1 o
X H ¥ = ST WL AT T Ak B 4 5 PR 4 A At 1
Mamba RH,  FH 2R 58 B ZFE AR Z3 4T U80S AN i 2
RIVERE. RN EE R R GE K. HEWTIE 51 - BEDA I
PR OC R B IE R P B i 1R 2 SRl B
1.1.3 G5 i H Ll AsE A

EER MM EERITE, NEARZE
TH] 4 % 40 B il A Y LA B ) R R I R A
{5 . (HAH LR S, 2R 1 SRR SRR AT
s 78 K. R AlphaFold RAIEE E 4 1E
TR AS S R T 7 TS R, H H A
BRI N B R A N 2 B AR, JRESE
153 )2 T R A T I 20 e S ATS SR A 5 TR A o

ProteinTalks"™ & i% 4938 () ¥ 6 P4 TAE. W 5%
HHEEL 1.6 HMEAMRFEA TR 72 3 800
AN E M E Al EE. EREMEEN L,
ProteinTalks {8 | #1148 % i 7> /5 #% (Neural ordinary
differential equations, Neural ODEs)"*" #f47 241, ix
— BT AR A f 0% Sk 25 o B P T ) 8% i I ) AR
MIFESENTT, W SR it b e B2 40 e X P sh ) B 2
Wi )97 1 A2 o

ProteinTalks ¥ P4 ™ il Il £k AT 55 73 1) A& Tl oK
SRS 7] £ 2 5 AR A AN T 245 P97 Rk, ARt
T2 I g0 N B A AR N E . B
TR T T B AR A2 A e I RO A] R = A
AN A% S e b TR0 A AL 24 0 £ o R0 8 L o [ AR
., & w] PLidE SHAP {8 73 41 S ] HE - St 24 1)
KEERH, HFRIME N RZ RS E, H
I R 28 25 4000 1 e
114 472 205 B PR R

B 7R B R R AR 2], BN
DNA /7 #1| A il AN [7) 48 B R 2 1 20 545 I8 0308 3 2
RV TRy AR ap VAT R B i R S R T EC B
fit” (Sequence-to-function, S2F) R A ), 3@ i 7 57

MIEDRIZHL 7 1 B R A . Je TOIRAS e = 4E 451
S 20 2 R ) g 38 v R B, X SRR T DAAE AN
SIS ELHE I S AE TR T R A A S R AR AN . B
AR S2E #7Y Z2 HUR G A 42 M 2% (Convolutional
neural network, CNN) 444, (H=Z[R T A28/, M
DA R R 4% 5 21 2 T i K AR A BAE . B IR
25 2] R Wk, T Transformer 4244 A5 4
Wi BRI R EY R T pA B CE i, fE
FRE B PR ZH A AR T 42 18 B ) B S AT B
Enformer #7 (© & SOF J fitl 455 70 AT sk (1) L P
il AR . 1ZAR AL PLZ) 200 kb 114K DNA JFHIE N
N, KH “HB)ZE +Transformer” FI7R & 224,
HJ H Transformer JZ H K b4 J& 1755 7Y 1) Jj% 52 B,
Ret A RO G 4215 S . 7E% 3, Enformer
e 8% (] IR o000 T 255 40 i SIS TR R 20 23 (1) 2 L 2 A
H e HETE (145 CAGE. ChIP-seq. DNase-seq
& )e 150 TRHCREMB O RIMEIRE /], Enformer
FEHG SR - J3 20 A B A F000 A R 2 i X A8 S5 2%
LN AEAT 55 E Rt T A0 T 45 48 CNN A28 (1) 4
A8, NfENTARmAS SR AL DhReFR L T A 1 T A .
IL 1 42 H 1Y) AlphaGenome 8 71 Y ik — 35 4%
S2F A I e REHE ] 1 ) . AlphaGenome
MNTIKEY EE 1 Mb, 5N T A5 F5IF
AT SR ) U-Net' ™ KU 2244, 454 Transformer f54,
FERBESE T b SCE RN R SE3 T SR gt 43
PR HETN . 7E HAREEtEAs b, AlphaGenome
MU & 1 IR FRIE R AL B, 38T H 5
A 7B 2 TR R A DL S = 2 5k DR 2H 4 fjh ] vl
G2 IRARAS . I E R RN AN BRI R 4H
Bl LIS X 7T ns,  AlphaGenome 7 % Tl
7 S RS SR v b R R A R MR R
AR 2 A AL (B2 7 B U
] Neo-enhancer J& i, ) I R AH RG2S 7 05 11, J@
T BRI A BRI 2R S o e
1.2 EfGEARE
i 18 & W fO% 4 (High-throughput microscopy,
HTM) & ¥ S5 Balfeilss N (DE. B3)
G ) MER o B A B A — B R RRUR R
gy O8N ZRG MG RN, R ECRE L
kMG, —REVEIFE4 TB 2% 2 o S Ak PR 1 8l
B, AEGNT o5 "™ 3T F TR R
SRS B 1 X LN X R g BBl 5 TR
IR, U CNN — Rl 4 i S 2 T i
F T B SR FIROR, CNN & £



123

SYEe, 5. AR A U R 1555

X o E B SR AT 45 0 5, 2 AR IR 5 [RIA,
LR 0 7 B R MR BR ) T O KRR A G R IR AR
ANIE T 7 BRI 5 R AN R OB S B SUE B
f£%% . B4 Transformer 4444 7E NLP SHUSIAT L),
J£ T Transformer (1 4 o Pl 45 55 il 155 20 3% 37 D% 2
W E. RGBSR LT A R E OISR,
IX AT A B 2 5] 2 F Al i T SRR, R R &
—EME DFEARZ AR
1.2.1 20 gk B B mb s Y

1 0 25 e SRR 2 i 6o T L I 4 B 5 A kAT
JURT S, Bl aniR Bl4n e or & AR, HAZ O S%
FLFESL o E] B AR I AN AE BB R . A AR
DUAE « 16 = 2% R AR P o B JE AR . TR EBA
Bt s T RS A B H bR %, DL AL BRI 3
PG PR 4 L 278 504 . AT B &5 ) Jak S et A Y
TH R D48 - R0 AR 00, D o R ek
T

CellVIT"" & — A~ F 3 2 20 4 45 o 40 i %
AYEIFIA I BRI AL . AR U-Net 2244t (1)
RFE SRt A% 5 A Transformer (Vision transformer,
VIT)™, FIF VAT f4: J5 18852 B 0 4R B U (1 = B
S B LUER HER, FIFHAD VIT e 5 B
FEARRD AR 2 I BREREEE, (R B dnhd 28 1% 2 R4
SRE R4 A IR SR AL G4 m D RS L. &
IR B 2 ) oy e I, AN G I A
FHAT R, SR BRI AR, SE
HMAZ IR R

HAAERM S, CellVIT 3 A Mk IIZ5 VIT 4
T 2%, TR AT ) g . — A FHTE 1.04
25K 975 B MG TSR ViT BUEAE N “IN 7 ¥)
GaAb s 5 — 7 R A] SR B AR R 43 1 i i A Y
SAM (Segment anything model) F 2 i 25 A 5 1E N
“HAN I B, AL 19 PR ZURAL,
2920 J3ANARVE A MIA% 1) PanNuke'™ £ #5 4 F kAT
TR, AT R A5 ik 1) i 2H 202 AL R

BT CellViT 2 4b, A —2K TAERIH AR K
B BT SAM I RFEARRE ), K HOE B 2
M EG S EUTS . BT SAM (14 2 iR 75 2
P SR BRI R, A ReBAT ¥, i E
2 BB S B 55 PO TR IEAN I SE . ik,
CellSAM™ IR T — M a4 B bRkl 3§ CellFinder,
H 30 2E B4l B i FAEAE e, RS i SAM AR A
T BRI . TR [FIRE R, SAMCell 7 Ik
FEXT SAM AT IR, s T TN B LA

MG 2 B Bl 40 M S WO L AR BE R L, SRR
3 7K UG B3 I P T P R O A s . F TR S T
MR TP EERESEEE MR E,
SAMCell 7E 75 253 B8 3 41 14T 55 h R I A

AT SAM 11 B E G ETEE Y nSAM
(Segment anything for microscopy)"”” 7E{#£ SAM %Z
EURRIE A RIINE, R L HE T 2 = R A e A )
SrEES . Bk b, JERBRER AT DLTE T 2R 20
AFIRB R E G RIN AEASE B AGT7 2 B
ZERBK, FEEMGGE AR ERSER,
I 22 T DA 2R 3 T W A (R R B ) RS 594 7
B, uSAM 435l N 2 B AU s A LT S5 A U1 5
TSR, SR AN [ A DO I R R R A
A R B
1.2.2 ZHHR B RN S Al 1Y

S R AN FN B AE B R IUs 4 18
B IRHE A &, F T REFRB MRS, &0
R AR BIMPBh TN . FEPERE
T W AR MR R E SR ECE A Y R
fiIE (Wngh B BARY BE M I AR ) IR, A 2%
25 B A R O A RAR R R I SR Y S R A T
DINO (Distillation with no labels)"”. MAE (Masked
autoencoder)”” &5 [ Wi 2 SJHE LR,y AR R 40 g
RSB YR 2 R &

Recursion Phenom % 1) 15 74 ") % 4 fig 2% <144
BRI RAE Tl SN AR o X SeAi A 2 LT
MAE Z¢4, ffH VIT {E A8 T W%, B EES
Je 10 I B AL 75 KR o M N R, I A A B g sk
RABGER, IIF IS RIE . LTI ZR 50 3
AR R DR, BLAE A T B 4R RxRx1 (£ 12.5 J55K)-
RxRx3 (£ 220 J55K ), LA A AR 22 (1) RPI-52M ( £
5100 /i 5K ) A1 RPI-93M ( £ 9 300 JiiK ), XLLK]
G RVR T B LA T T 11 35 DR el o R AL 4 A B S 56
WFFERIL, 24 A —(5 5@ L R, 8
Fl— B AR E SRR “HHCERE”,
B 0 I e AH G B R 3 JE 3R A 10 4 i R BN
Phenom i, 45784 A= B 1) 41 Bl 2 R i N 7] 5 2 7E
fEZS A H AR RAEAE — ko IXAH 24 TR AN i W
KRR L, e —ERE L CEREW T
LI T A ) 2 T 4 45 7

DINO #5784 U1 SR “ ol - 2247 SRR &1
(knowledge distillation) 4244 « 7 A= AL I L 0f E H
B 5 BT S 2= SR EH S8 5%5
HIR R F L, DINO A& H B R, I ARLE



1556 G TR

374

TETSE N ZRUF IO 2%, T 2 i I % 2 AR AR A 2
BUii4a 50F% 51 (Exponential moving average, EMA)
KAFBNBINSE, AT 24 Dy SR ES 1 — FhF
3R G . DINO 5 — P RBEWT 2, FMBREL
WG 4 R AR L, T 22 AR R AR B R AR
TRIZR H bR 2R - F—5K BRI R R e, 5
M FIN S e A S, A B — SR IER R
I I 5 16 5 R RS 4 SR A A R BRFAE, DINO
1852 T R N BRGS0, RIUAHHAS E (1) &
T SURHIE

FE 75 ' ik Bl RS AR vy P IR 7 32 PR S 8 b
TRIIZE 5 1) DINO JE 30 H B 2 (0« v @ 1%« 491
FE 564 1 i NI 8] 7 1R 25 B AT 42 7, DINO A=
FSCER 2 o N AE B 25 (8] v B S HE A TR, 5
20 J A ) (G,-S-Gp-M) H 1E T2 v B 0 8. 3K i W]
DINO U EAFEE, A —eRE FEH
R T2 H JE I — B AR AR ) A A

SubCell™ J& — AN Al 45 [ 5 041 it 5 437 12 1
FTy REAET I B BERIBL AL . AR5k B A
252K A J5i 3 (Human protein atlas, HPA)®Y, H.rh
H bR 040 e e o7 38 ek B 1 DY e brid R 4t
AT AL - AR (). TUE (L), R
W (BE ) FIEPRE R (2RE), MM 7 4iiE
&5 EAFUE L8 H) X B K F . SubCell K £
SIS BTSN EE S - BEALE
i B R — AN B, BRI AR X IR, H
T2 ) R SRR AR A R A A s B S A S5
A0 e e VERT EUAT 55« BT XA 2], s/ ME R —
Y f A A3 B A ] (i, RGBT InmREE ) ZE
FRAEFE B, B KN [RI 40 B 2 (R R AE R 5, e
R 2z 2 EU 20 P 5 A R REAR TS, FF X R AR g 5 AL
BEBME 5 MAESS 2 & B R R X EE AR S5
e/ ] — Fh i A G € (1) AN [R) 40 B 2 18] )RR 41T B
B, R ZEAMARESE R, TETHRINER
Jo3 7 18] 3 A AR

R B, B SubCell £ H ¥ U FFAE 2 [A] [
PR B 5 8 0 - B 0 EAE O AR B EE T e
AR, XEWE, WEY IR AR K
SO e s R 7 ELAE R T T, Dy R UL
TR TGS .
1.3 ZIRSHEERBNARIK

& 28 SR W 2 7 HOR ERAR e LA el i 7 U
Mraii i) FHREE, (BT fEA e, Mk
KT AR EAR B B0 4B gAY

FH R R R IA TR, 382 B AR (4R b
RrE . 55 AR 4 M B A BAE F DL R 28 SRR
S 7 [A] B 5% 4 % £ R (Spatial transcriptomics,
ST) wJ [A] i 3R [F] — 2H 21070 7 10 v 29 3% 26 0 38 R A5
AEA FE PR Ak 1, e B A o A5 2 40 ik
AR SR T A i B 4 2

UHT, 40 AR T A AT S AR
] Z A Al AR B . ZESIEG A H R
PRT-2 ) BRI R B L3RR R &, T2l EE S — 15
S E X R SR 2 TSI E R, A
TN 2SR G SRR R LR, IR 55 P
245 . Transformer 2244, X Eb 2 3] DL S KA RS &
Fes 2 i RER 2R, T8 25 1HE Novae™ . stFormer™,
scGPT-spatial”®". OmiCLIP"?. ST-Align®™" 5 Niche-
former™ 5 AR MR AL 0 JELG L IR SEmE K T
e H o
131 T P ph 28 o 2% 117 2 ) R AIE 2% ) 4 7Y

75 [B) i S A B3R A A sy, 20 B R spot MR
D9 R e A TR AR 5% R AN I SR AG R A0 <1 8
JE RPN AR B B2 )7 50 Novae™ f&— 255k
T B N 2% 1 S (A R RIS, SRR 2 ) R
R BRI R RS B i R AR 27 2] 1) . Novae SR H
THENAL T SWAV H B EBHESR, FHAERER
J1M%% (Graph attention networks, GATs) Hi# L K&
AR T RV R BB 0 R s, AT B A b3
AR = (7] S5 44 1) g

7E H B It 72 94, Novae 1t Bl i A% Hi
(Optimal transport) 7%, ZIWRANFIY) A AERAE
A R S 3 A, AT SEERES U B R R
RIE. HTEAS 18 FIZHZ. 293 000 542l
KAE R FdEAT T 2R, Novae 7585 41 2375 (8] 7
X HZE L2 5 P 2 (R 7 A 55 R R I T s
P EFEAZ AL RE
1.3.2 2T Transformerf] %% 8] A2 H 5 H

1 775 [A] B s i@ i, Transformer - H 42
JRVER I, EH IS S 2 i 2 A ) 8 TR A T
FEAK #i. Nicheformer™ f& H Al 2 FF A AL B2 A H
A 2 AR Y 2 —, I ZRiioR & AR/
BALTE L1 AZRAN M, R 73 AR SRE .
Nicheformer ¥ FH 3 X 32 1A HE 57 /E A4 Transformer [
BN, S o [ R 2 R i g S E N BRI Pk S U
5. 1E FI#AE% L, Nicheformer f& I H ¢ 1 iE
FERE T, AR A 2 110 Jo R 5 5 vk B T ol HE A
HLI 7S (A bR T R A4 B 235 P R A1 3okt i 4 i
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stFormer™ J& i 5] A\ 58 S B AL R AR fLL 41
MG 57T L4 L, stFormer [ 4mhd#5 7
PN IFAT 33« BVER 153 SCAR B A O 20 i N EB )
FERIFRIA A, o) BRI RIA K RANFE 51
5 B8 SUTE R 753 S U F e 20 B PR R DR R ONAE
DT, A T A8 e At 4 B IR T A T R
RANE N BEERME,  MIMAE 71 )2 T 2 A 52 e
A - SZARAT T RO L SRS TS o stFormer
FERE 29 410 T3/ [EAEA (1) CROST odle 7 1 itk
AT7 TUNGR ), FEREURIN 25 BT SRR 5 25
1R TR HUAS TR RO

scGPT-spatial®® 3 - 51 4H fifg 3 it 452 A scGPT,
ARSI GEANTEELE, ARG TR
(Mixture of experts, MoE) 42 {4 7 D) kb B AN [7] 4% [i]
WP HART= AL . 83 spot Py D R 2 il
DA spot 8] 48 15 5 4 P 2K T 2R AF 55, scGPT-
spatial [A]I 2% 2] T spot A % S I 42802 B AR A
B A OIRAS s ma i e I 2R 8RR 65 th
Visium. Visium HD. MERFISH A Xenium [0 5
A=A 3 000 2 J A spots, 7 7% 20 RPN E K
ZMEEIIRAS, ERRBAE 20 NS R I AR
FERZ A TERE .

1.3.3  EUME-2H 20 S

¥ H&E o B S5 BRI R B EEBRREAN ST
PN E AT 55, A2 LI R B W ) s 20
%, OmiCLIP f&% ¥ -F CLIP (Contrastive language-
image pre-training) P XUEZER) . —MIfE LT ViT
HIAR 3 g 6 2% A0 B H&E B YI s 3 — K 36 (A
FIB VG AN SRR R S N SO Gt 2% . B8 E it
B RARTC T B - 2 s A A AE [ 2 [B) o (1) 4R 5% AH
B, I/ IMEAEEC X FEAS AL RS, 27 ) P At
SMEERR, NI SEI 2 1 2 R 5 i st 5 s
Z [A) 1R 1 SO0 5. & Tk, OmiCLIP AJ 7E Loki °F-

& RS R. ZUI A THE L EFARA
ZAX I H B SOERSEAE 5.

ST-Align™ 3@ it spot %} 7. niche %} 7 F1 spot-
niche &2 B0 7 = E WAL TN ZRAT 55, [F) I il 4
7 [B) JR A A T AN REARGE K, SN 2 U 2 (AR AE I
RERG . fERASRLE 77T, ST-Align K H 2 T
EIW RS, R A2 SO R B S I B
fIE 5 BE PR SRR RFAE IR FE XS 5% o 7E4 130 J35F A -
Fe sk HFEA LS8 NI 2R )5, ST-Align 72 %% [A) 52K
PR AN DR 2k AT 55 B0 008 T 4 L AR 2 i
TR AN L CLIP 2% 55 ik

2 LHEIAREE AR B E APk AL

I R AN [ S S AR ) A 11 2 i s i A AR
(£2), CAE—CRE %I BN KIAEE
B, JERCNZ R T S PR AL BERME. AT, AH
t ChatGPT™™ 3 A )38 F 5 5 #5 8 5 AlphaFold %
B AR, R A 3R kA R ) AR RE AT R A
B LA K, S I A 1Yk AR T T I 2
HPR.

NECHE A, A0 R A TG 2 v A
RUVERE R SCHE R . AT 40 P S At 22 1 )1 2 B
FEN R R AHM A R, X R s A
P mMRFE . EAERET PORES Y, O, A
BEEAEM MRS S SR EWRE ; H— T, &
AN ) o AR AE SO R s R AR e T o e
Ko H R HS S O AR 1 I SR E i B ORI AL 4L,
TEDLE WP EAR A T i — PR BBy K E
FERCR . URAh, S I Fe AR b 304 ) 2 4 i 78
I (R AR A DR, SR R S 4
BHABIRE, e ARG ™ A& HO 0 B 8, X0
A ARSI R A HEWT IR SR OC R L T AN P

MBI B Btk G, AT 4E M EA A 2 H

2 ARRERREEMRE

R TSR AR MR (T T R R AN 28 B TR AR A S o)
A el scBERT. Geneformer. scGPT. scFoundation. GeneCompass. CellFM. STATE.
Tahoe-x1. GeneMamba., scMamba. Cell2Sentence (C2S). UCE™', xTrimoGene™”
R EpiFoundation, EpiAgent. ChromFound. GET
EHRA ProteinTalks
EZ S | Enformer. AlphaGenome
K& CellViT. CellSAM. SAMCell. uSAM. SubCell. Recursion Phenom. DINO (Cell).
CytoImageNet”"
ZHMRE  FHA+ZES Nicheformer. Novae. stFormer. scGPT-spatial. ST-Align. SToFM"”

R EE A+ ZBE OmiCLIP
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FEAE B SR 5 AR B8 F G AL 45T 0 22
P, IXAE— B FEFE b B 2 B R e X e A | 11
INZRAEE AN R, MELLIE 70 R FH G v A P 5 R A
It —BaE T B EN R R TEERRE, X
S IR LE W] R DT T R A AE A, RIS AR
M LS RN 285 S AT AE S DAVEAS o i AR A (0
FOREER I 24P TS ) 2R W ESL T
(17, 5Bl B 2 T 0 B AR AR, ILA
BEARA RIEIX — f B BRI 2 18 P 24T,
PET AR O] R RE PR 1 25K 32 BAE R IE WL N S
Koy 8] JZ RAE TR PR ECAE D 2 5. B, Gene-
Compass J8 i I i fi# BT Transformer 22 #4) 1 (1) 5 1
MABUEFERE, RO G s R 7 5 BRI 2 [A]
PRI R, B4t R BB Ak R v] SeE
(P R VR P P 2%, BGrE T A B SR AR B 1R JE I
PSRRI BRI AR B Ge i AR e M . R B IES
J7 T, Recursion Phenom Z 5| #5 4 i i) #4515 H 2w i
A5 2 2] B 1) 240 P 2 R AR ) BV S R R S IR
FE AR 53 A, D REAH 5% 1 35 [R5 AR A LA A AL
a2 BRI, KPS S MR
R 308 Tt ARFAE 2% (] R LART 403 PSR HE T 2R SN 30 11
Dheedlbil. SR, IUA ART B 215 B AE AR LIt
JETH, G ek g B % DR SR HE R B8 ) 1 AT R PR AE L,
ST 7Y fie A% A il T LR R 3 S50 B I 1) L A AR
W, ARA KRR B MESL. hAh,  H TSR
RV 5 BRI AT 45 R L, M40 A SE kAR 7Y
A SRR NS R B0y 2 0F . G SR AR08 T 03
Wh i 221 166 AN [] Bt RS 5 4 SR 0 IR AE KA B
TAEBTE R SS I IE T G Ia 1Y) a7,
MWEZAERE SR, TERLUCGRN bR Ak
RERSATS L, S i Al O & R BT 1)
ZAGRET), BRI R AR A, X T
FLDRI /N 73 F- P80 5 L 1 200 PR 75 780 A T 45 5 .
PRl TS5, AR R B &G BRZ R
J1o CAZERIARZN B,  FUAZ AP 2R 1 ot 2 ) 2 A
BEAW, @D TH, MEARKE RN
BANEEERR, PG B0 R P R 4 i B R AR 22
i % H R EUE AT FIERTIN, HR RS
NG R, RIMER A ESM 57 51 LRt A, 5t
2R RAR ) S AT AN, M DL AR v A
TR A DL RIS AR P 3 3 0 2 3 3 o 3K
BoR, (ETUNE R PSMTS T, DU 40 f S A
A (1 seGPT. Geneformer %5 ) £ EFEAR LAY R T
RS JE2 AT A0 S DA B T 5 ) 2 P A6 Y B 1 i 2

B PR, S S e 2 B BN ZRAT 55 (R
S ) R RE i A TR 221 41l 2 1 i DR 4 X 2% e DR R
W, 3 BOS YA T 4 SR (KDLl s PR HE
Iz ALRE AN MY BeAh, R R VPR BR A A
Gt—, RS (W1 L2 B U R )
AR T A R RHERR I (ndish 7 A sk
TURe e Ve R AR 4k )0 DRI, G fr] g S 3 i PR SR
HEWTRI TN ZRESS, DLRGENL RS« fa] Ak LA A
Xt RS PR AR R, ST Rl A TR A A
TR T S P A AR R RS Y AL R, /b
oy TSR SRR A, LT AR
PR RN, BN 5 PEsh oS AT 55
S AR i B R AT B,

UEAk,  H A R A EUA B (1 R 2R AN 2 A
P, ZO G SE RS R AT ST P4, AU
TN AR S5 3 5. Q0 e ¥4 e 38 P TS (R 4 B 2 it
BERY, FRAEAE DX BRAF T 2 AT A PRIAE 55 A0 07
Blfide, HEREAGU LRSS 1.

3 ‘ARERRRERIARRRE

e T A 4 e e i A 2R ) 3 0 Jee R 2 i B
1, AT UK IR U I R R 72 20 IR A R AE AN
) 1 55 75 T 228 Jre B L B S R T I . SR
BRI AR B A ar i R A A A A B2 22 T
R, 5 AR R e S T S5 QBB 2 ) A
R o

AN TR -4 BRI A 2 5 ) Y g inh 2 320 1 )
B ARl B R R SR TR DL B SRE B
AELE, KIS LIS FAL Fig D g hr
LU . B R ZEH 1% R T8 70 7 RE ] &R Stk
WXL HR G NI o AR ¥ 40 i ZE At A 7R A
ST Bl KB IZ D e« + AR IR E
o O B R AR SR
FENUH . 40 H T F 05 B UL R W B 1855 2 R IR
ARSI IR RGBSR, AU BT
Mg 7 5 K B b v A PR ) 3 557 T 3R AT BE A g 1 R
fit, A BRI BERZ RS, FRERE . PR
P 2 S8 5 AR A R R 7 R AR R B (3t R0 5 1R 1 S
ElE), fERAEAAE SR WEN, B
FIUFTEEA HLEE, T3 56 25 S A AT R Ak A A 4 2
A 381031

IR T ATVC R AR 3R 22 AR A5 R
MR e R SOV I P DB AE 2 G Bt 0 B
. RUWH. wEAZ. mEERE D RIRRRE
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HEZVHEARAW R, WHTES —RIES A RS
KEAE R, IRl 2 BT T SR S IR A 1A] 1Y
FHEALIEFI ELAN, TR XS 55, W E R e
TE LS AR AN R 2 1) j R R R 7. 9, 25 ()
HF RN TR G M 5, g s v an
MOIRAS BN A 85, 1 I RAS B s 40 A J2 1
MRS M TG B R K. A 2 Bas4H
MOFERIEE A, SRR N R ERER T
L AR 1O,

AR ZFEEFAE 2O 2. H Al s i 2 5UE
g I E T A A D HRE AR, KRR
AW ZE S I A 2 BEE M R Bl e o R R U i
A DAE A L R 0 Bas AT IR B [RII, SAEAE A 93
T AR AEE RS R RN E E R,
A E S SRR 5@ R, Bl
AR E TR HEE R ARG K ERER, 7
FEAGE R B o [ ) 21 25 ) o 3 =2 R AAE 5 ) e
REAIE, 40 B R Al Y A 2R S B B ] SR B Rz AL,
PR AR IE MG B, gk T HE S A SR AR
W22 BEVE AR S5 JE R ) R IR N 7T T 1

TEBIRIETH T, AR AN A S Al s 28 75 B0 20
PR R B ARTE S A BT S LA R 2R
MM, 1 SN G A ) R R U R 4k
ihe fEBAEEM |, TEEMEMNZ RERSHY
i 7% 7o A R AIE (R A A 1O, g R R 9 4 R 485
20D - 20 B A ELAE FH I 2 L 2H 2375 8] 45 0 G2 — 4
ANFE s fEUIZRSRn B, IR EIR R & & A3
P ARe e i B B S IRE T A o) u s, £
P AR 5 O B PR T T R R AT AR, R 42
PE B ARSI N E . 8 B IR T R R
th, BRI TN M B A R, BN
R R AR S ) S, I 38 98 7 VR AE A [R] SR 6 2% A
MEARF-G AP T RS FEE

A, B RIE S B M EORM B, 5%
(Post-training) F7 A, W48 4 FiA AN 2 R oAk 5
>, B BCRPE T AR BB AL AT A ) OGBS
VR TRR, ARSI AAN fe fa Hh Foll 25 {
ERe sy e TR UV TR, S5 A AT BB
14 (AT agents) FA U1, 2 it i f A Y A B A A
A TR B ERRWREEF. ek
Al DU AR A Tl 45 S AR AL e, B R
UESEES, 2 IKED E 3h 4k 5056 = 56 A IR E, M
T H0 I A i 2 () R B I 7

e a, BEAE S BE AR A B D) g 1) B AR .

ORR PR TR N7 BT R P58 S 5 LU e PRI A 2 e, i
S WA (0 17 B AR 42 D0 2% DR s3I B T
SETHRERILEA R (8] 2 AL BE F1, L REFE BhIRAT
B2 SRR D) RE AR IR S AL R A

B AR SRR ARLRE 12 M B — Sl
WENHIRAE TR, BN EEMZIR R
BRI 25 F AR SR S s . B8 R
VIR GE—RACNEZL . 255 AW R e B BEAA A,
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