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Predictive and generative foundation models for proteins:

unlocking sequence, structure, and functional mastery
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Abstract: Protein large models (particularly structure prediction models represented by AlphaFold2, RoseTTAFold,
and ESMFold) exemplify the integration of artificial intelligence and life sciences. By training deep neural
networks—especially variants of the Transformer—on massive biological datasets, these models have successfully
unlocked the fundamental challenge of predicting structures from sequences and demonstrated immense potential in

functional prediction and protein design. This article reviews research advances in protein prediction and generative

WisBEE: 2025-07-25; fEEIBHA: 2025-11-02
E&WBE: EFXANEEEESTIH(32171246); gAML A1 44T H (1JC1403700)
*@{S1EZ: E-mail: mabuyong@sijtu.edu.cn



123

IMESR, 5. WARTIAMARCKER: WFFA. 23| Th6E 1535

large models by discussing their core architectures, structural prediction frameworks, and design/generation

methodologies. Propelled by continuous innovations in large language models, scaling architectures, and flow

matching models, protein large models have undeniably become powerful engines for understanding and designing

biomolecules, driving progress in life sciences and biotechnology. They represent a pinnacle of "Al for Science" and

will persistently spearhead a wave of innovation in this field.
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Atom (RFdiffusionAA)™™ BEME 2= A4 4 7] 75 40 I M
(17N 1) de novo T i 4544 . 4 RFdiffusion
THUAEB T ) RFantibody FEHUAR T F A2V
HEE S R ISIE . WP - iR E A8 CDR
552I0 M % 5L (RMSD {4378 : CDRH1=0.4 A,
CDRH2=0.3 A, CDRH3=0.7 A ; CDRL1=0.2 A,
CDRL2=1.1 A, CDRL3=0.2 A)"Y,

PO A AR B i KA AR AR B T A
GeoFlow-V2 & — METHR-F Iy EBEA, [ A
BXTEREAR . IR /N> AT 45 FiU A 2 o
ML A B T RE PP GeoFlow-V2 [A] I 1 2% & S i

24 SRR R R0 IR (0 B N AE N 3l Bh 4 #F . Chroma®™
FINT —MBEERGVM RGN Hod g, il
V. R T7 4 TECK e AL o3 A FEAR O T B 0 A, FARTR
RAE R BR A 2R SRR, N X R A
R s XS ARE SNSRI, B
% S BN R S5 R RN B KR SHER AR 2 AW
T BT, TopoDiff™ i) FH 47 Bl B 1) 25 i ik 71 1
A2 5 H 9 i & (VAE) X5 Ak 22 [a] ) R AL AN T 46 e
71, RSP A R ANRAAE, BB 2R A U
sk, REAEXS B ARINE R EE, Wb T R
NP AR E

& AL LS A TR IR RS A5 A, T2
I G BB BN AT D RE, a0
Z L AVRFETHSE . 555 PR,
PAJe 5 R% 8 / Be Ak / B ER S5 R Ih BLA . A R A
FEIETHE RIS, DRI s
Y&V ANICIINE s S = o L A NEI F SN O
PSR 2R (18] I FH {8 B 1 o 5 ) T AN B — TR S 45
R FR0I i N BT & A R IS S R A X —TJ7
) 5 5 B S22 R 73 18 71 %% (MD) #5407 A 2
EUR IS G, SR 5 R R BE 5 20 7= A Al 4R
RITIMBAS A BRI A1 o SO 7T Distributional
Graphormer H|H] £ 47 ] GPCR 5 40 5 44 42 A1 b 72
(195 3l )1 AU VNGRS AL,  Re s T — Lk
WERMEHEWER D MRS — 4 RIBFR T
BioEmu-1, A 25T 5013 J1 i =4 &
FUR B RAE RIS, W2 T T ARSI
H B9, Deepconfomer 3K F T AN 1 #6145, A T g
Py A1 IR EE RS, RAIH A
(S ae S5 MR IR AE, 1A A5 5] T SEaR 4544
K 2 0 e 2 SOR AT B A8 SCBE, R A 4 OB AL it
(& A RIS RS F I 0 T30 1 B & 2
2711 5 (RMSF) A8 5 838 51 kS ) R P2 A R
AR BT,

SR o R A 3 SR R JZ B
Transformer), {HEAIERIFES. MIAZR, HIE
HIEMER R P A EREER, REERIUET
HEENH. NIREEEHRWRAA, K2 RAHLEK
TR AT . M ERATULAEH, A
W BEATAE I BOALHT . AlphaFold2 7645 Al L
B, AE BATE 5 B U A B () 9 AR AR« ESMFold™ Al
OmegaFold™ $2fit 7 P 3d (H 1 FE A b i B AR O &,
JUHIE M T8 = RV A ) 5. EAE AT S5,
RFdiffusion £ #1745 HAHT1E_EAISE, 1M ProGen2!"”



5128 MG, % B ERBIIAAE RO, WAL, SR EIshE 1541
R2 EREHRARIEHELL R
e Ry 2T ) NI I WIS BRI R
FRRR
ESMFold™  Transformer RAEER  3DLAG. RN, Ed MEOBHET BURSLR. KM
(57 51) 1 Embeddings MSA’EM, 4 AF2, RILH HUEERLLY. FAI
MIOLEE  EAHE BRI
OmegaFold'!  GAU (ITRHE® ) MAEER  3D4H  SFFHIAT HESESMEd 75T 5 6Lt 4
#70) 51 G N
e
RoseTTAFold™ =#iTransformer 4 MSA. ¥f¥  3DZH  SUMBUSE % 0 % % HOHE AW 0T

B OFFIE . B
B AAEREL)

Bl FREAR S5

ZHOME, A
X

) F50 W (kb 72
AlphaFold2 #
B

M E AR - %R R
aY). B2
PRIESE R fFEAT

AlphaFold2™ Evoformer MSA. #H @ A5 3D KRR, KEMSA, if KA. 4
(Arig) 7 . BiE Xk B E, W AR B
5| J#(pLDDT/ 18
pT™M)
AlphaFold3®" 3 Birp R+t EgdlEE Wy TE ZESTI,  RSEZR, EAR-BA. EA
Evoformer i L) ERUERL ] KR FEERER AR PUR-PUR
NGRS TH [ SETRN
RFdiffusion™” bR (GE T (AIIE)&MFL) de novolEH BRKHIAEAE 7% SProtein- ThAEH HSC LT,
RoseTTAFold) EAQUET5 N JiE AR 71, W MPNNZEECH 456 EAwiTH
TER) HEAT P 50T

WLE 2 0 AR A @ ] BRI (. W T8
HEIEY) 7> T AHEAE S, AlphaFold3 /& H il fie 4 [
A, (EHAT AR F RS2 2 PR PR LR
MIELER AR S X TR AU AR BAAAE S5 (RIBRHE
FE IR L, AT IIE 2 it ) A& T
HAERELE,
2.4 MESMZ|ESM3:
=AY

ESM % 7] i3 i 15 5 ESM3 AE R 2 M35 A2 RS
M, g9l Fra). 5. DhREA M, EdindA
ERI AT AR, REMIEEE BT LA
Thfg. ESM3 K ZRid PR RE4 T Bk H AR MR 2
FEVE — B emaEa i, HELE E—CESM
RRY R, HIERE T 60 £, kit ERE
125 4%, JFHAARAZHEHERMEA . ESM3
BE AL B dTmBLee /1, Hh— AN EENRE I
e JE TG, AR R BT S50 B 5 TR B
ESM3 FI ] TR A7 SE(3) AZZVE) LR AIHL
i 1 AR R LR R 2 HE A 42 R AE 2R I 22 L
B R AR 2 JRAE UM B H A S, TR
(R LT 35 ML ESM3 4SS 70 B g A ab B 2R
JRI=HES5ME S . Wl 2 ffa, 25— transformer

MEFISEHNZREX

LR 1) JUAR Y S 70 2 Fe VR Y B FH A P
PR F-AAFR, KIEHEF T ESM3 X 5 A4 br ) 4b 2R
Be . NS . ) ESM3 A5 KRG E A
730 2 15 58% BT ALt H H esmGFP, ¢ 15k
FESRAREEAY s W2 %R & O S AL SR
BT B LN, TP I 4G 33% U OR B AL
Ihig U,

BRFPHIME B2 Ah, AR 8 A Bl SR Al v T
RRNEEEMER, A TEUEENEARZES
TR IS T ik Y. SaProt ] Foldseek
W AT gAY, R T —4E0) 3D G5 F A (ff
T Foldseek 4549128, 4F 3D token fXZRANH
PR R ), XS T 55 R 75 2 5%
Kr. Rk, Su k™l T — R T A Rk 4
TR TT 20« R MR R A LR R R R R
IRALCEPPRA5 ), T2 OB I S5 iR N i £ . X
FEXE T2 o RN S, FL U R R 2R ARG B
RS AR RE 4 & OB IR R AN e E, Tk
BRI ENZEINEORN TS EMER. fEE,
FIH Bert ZERBEATHERSGTE 5 AL TIZE, 153451
EEN RGP A1 5 250 B iE S 1Y SaProt. H.
ARG (5 5, 328 Psi A Phi JEFF A
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Project logits for
each track

L x_mocse! [T AT I
i

Transformer Block

i
Transformer Block

it

Transformer Block

h

Transformer block
+ geometric attention

4

|
LR 1 1 1 Y ) 1
Embed and
position-wise sum

22

ARG R

7
%4% !
%

4 % |

_\[’,_<

Backbone frames

L

I/ sequence

ZI7 A Structure tokens
N 2% L 2 ]
% ||| G 7%% ELNN

] Function keywords

. R/ Fesicue anmoations

ESM3fes LR e HEBL SR B 81 SR R Th RE,
BHIEREVURAEHER, IR 5 i TN BB A (K token i .

RALRE =3 23 53R i N o e tokenHUE . AEYIZRARE D, REGERT

&2 ESM3ZEHyiEsR

%% £ 7% DL J% alphafold2 pLDDT 73 ¥&5(5 5., JCA
FFIME B0 ESM-2, 0] L3 35 SaProt #H 245k
B4 s AR B,

T K 2 BT & B ESM-AA £ B MRS R
BB 5 T8 B AR B B8R (A B IR 5 g B,
MALEN A 2 REGE, R R B ikt
fit. ESM-AA )2 RIZTIZ: H br B3 ST 5 &
RN BN PR B VK 52 (PDR).  HE AL 1E & 2015 1o 3 76
QMR T, FRABRRE & Bl - S AT
W, X —IINZRAT S5 AT LATE S 8 A0 5 7 A RO B
HEAT . T PDR U 22 SR AR AR A A 70000 AN 7] 5 2 [
RR L BT PR B, DA 2R A58 20 At iR 1 2% 1) &5 )

E0
H oo

3 EHRRITSERARE
T EARMFEIE RARE R, kBt
WA E BRAE A IR A LB

RABOE B, — il B R R R R
o, frE R, RS IEMTT &M, ZH—

AN AT B 2R R 5 e 56 b PR ) A1 SRR A 1]
TopoBuilder™ ¥ 45 14 i & L 10 ¥h M S H b oy E A —
RESH TR 73 ZHES, W EERR, IFFE Rosetta
RER KBRS FIRALIR I ORI HES 203, AT
SR e VPR N AR =T R a8
3.1 RICEAREIA

25 Mg BN R ABE TR RN DG OB 22 > iy N T
0T E SR BT P A AR AL PR IR B2 22 ST RE B, AT
I SRR B ARSI o0 A, SRA: B BA Y 5
Mg, A TR E g A W R T
AT ) — Se A L 4 OriginFlow, 3% B ¥t U IE A= A )
S VgD RIS =P S RA D B s S D R LN RSN
DIRe 7 S it 2RI EE VAR R FR e
MG A EARTS RIS Y, 1745
56 Th BT fL W TS5 1, OriginFlow J ) 56 B 16
A (>94%), M)A RFdiffusion. EvoDiff 2524
AR, RMSD #{H <1 A, T4 #) pLDDT>85.
Proteina #2& 75 —ANBI AL . RIS 1) 2 1008 1) 2 115
HRAE RS BRI R AR AT & 2K R A
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(hierarchical fold class labels) BEAT 25 AF 45, A
F— A0y &) Transformer 2244, Hol 4%
B T HE NG RE G . T & R
TAFUE SRR, WHMEFEAE TN EA G
ZEH) LoRA TSl . B gl S 7% (W& H Tk
H R L TG 25 28 51 5 (classifier-free guidance)
FEZ)5] 'S (autoguidance), DA AHT B ZEI 25 H x
Proteina [1)75¢ s £E T e A A FERT T ARA ((=i& 800
ANIREER) KEEE R, R E T8 & AR AE A B
ZER RIS T B TR AR T s A Y

Jing. Berger I Jaakkola 2 AlphaFold 1 ESMFold
5 VT A R 5 A SR A B R B %10 F A T
P2Dflow | F 73 5)) 77 #5408 74 G SRt UL e A
T FH SR TN 25 1 4G B A A A BB T R
ISR, NT X BRAAFBEERERE, B
FINT “IRIREE” X —W4EE . X4 E IR
Gy F 3 71 A 45 AR Bl B % 42 (RG)
¥77 M 25 (RMSD) 5 ) — 4~ b, THE &
W23 FE SRR o IR )W TS 1A 2B A 2R R g
BB 38 S A AFAE B R ADIR S
3.2 EZHEBRFIIRERAE R REM-FHRIHE R

B AU AR AT By R TR E B BURR
TR PN AE s 2T 5 B 2R 10 7 91 A BRI FR
B E T AR . Wit REN B 2 B €
BRI T A, WHRONE AR S . F
SHEE T B i — o A — Mk @, A
PRTTVE R FE T RIS A R S v U AN e /MU RE =2 bR
kst tn ABACUS"™Y il RosettaDesign™'. #R1f1,
N LU IR e & R O DL S8 5 R (s B AR S
G W IMEA—A TRk E, ] LA T I
ATIEAL

TR L 57 2] (R R SR — F S W PR R AT HEAD,
SR LE A B AR AR B 0 B 4 R BRR) S 45 A 3E AT
Wrik 5 . FIRM S R T g A - MR as 1 48
¥, FF A A [R] () 455 7Y B ok SR AE B (1 T, 9l dn
ProteinMPNN* i F] #1315 £ 34 4 42 [ 45 MPNN,
H ABACUS-R™ {ii Fll f) Transformer. AlphaFold %
HI T H R AT 7P - S5 K R
IS AL AR I 77, % AlphaFold2 %4 4%
R T2 ) B O SR B R R, M B ) =4
GERIEEAL N — 4 A a4 Y . CarbonDesign!™
FERLEEA b, AR T AR S R S ESM2 741k
N, B L R AR 5 RSOPY B it
£T AlphaFold2 [ 4% 16 B T [ K S8 A e 41,

AL B B, X P E AN “4I0 7,
ProGen & — /il F I 88 (T 51 K8 & A,
M7 281 {ZETURNEATT ISR, IZRIRH
THREBHIFRZ (1) KEBIRRZ ; 2) 2 HEIRZ,
SR FR 2SI AE UniProtKB 243 |2 444k 26 1717
(FHrvr 2 A IR B 2 AR (GO) RiE ) 5E X,
Pt SR AR 2SR 2 T 1 100 NARIE, IS YH 4
a5 ARV FERNGY T IR = KGR ARG . 4 28h5
ZE AL %5 ok 5 NCBI 43 254k & (1) 100 000 /> A i,
Wi T \EFRUE D ZEH J6, X FE ProGen 1] L% i
P 25 2E R A8 R A RRRE R A1 BT SR ORI
Profluent Protein Atlas v1 ##a4E (5 34 (e eK
BEEBEA 1.1 A EEERARL ), FHH) ProGen3
REMS A2 i N 2 FEAL HL DD RE U S B B i, HE
RIMER S HIE PRy, BRI A S
1 B8 HE—5, WEFCN GBI R N
(1] 55 948 4% FIXF B BEAT RO F2E A T 100 54
HRUTI . R ERRIE SOBEN ARTEE, &
100 /N7E S5 kAT RIA & SIS @
UGN 46 T AL I 2 R, 72% BIER AR KIS R
If, RS AREOZERABIE A, N THEAMEE
FKIERG, A5 100 MEAGREEPRBREAR
B EM S EFEENT, 73% KEE TR
LT 550 BT T B REAE 2 0V, X SRR AR A,
Progen 1] L=k HA #E RARTEM AN TEA .
BT B AR B — AN PR HEE T AE ) B R
¥ 5w S RN IR I 0 A, AT ZE 7 41 A
ANE & RIRME . ProtBFN vE 5 22 3] KRAREE A BT 51
(0354 3T 2 2 A R A RAR B R R 51
23 P T 5 O JE A 2 AbBEN A] DLFH >R M Sk
A R BR B B X R R DU S 9 R 4% (1
PRAN T B RUANREH T B EUT A IR R, B
P BGER T 4 40 BERT K5I B 7E 0 52
H N T i IA ProtBFN & 7E A= i #0111 2 11 5 1T A
FEACIZ IR EE, 1F 78 UniProtCC i)l 2k % 45
RGN E T I BRIV 45 R B oR A K7
B ERIE BE, Hoh 4 444 ANFEAR S RRTIT T
R — PN T 50%, 75H 8 851 A~y 9 489 MEA
(K 5 [ — 443 51 /NTF- 80% AT 95%. CARBonAra
F& N R R T AL bR AR B o IR R AR T
P OB RS, 2B B AT DUAR AN [\] 431 36 5 I e
DRI F SR E A A, BT ¢ b
N7, TEH S UIZREA [F AT B 250 4R 1l AR
W, EFROR T SREEBANY o T S, kg
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P b 7 P B 2 26N 54% $R 8 5 58%. RS2,
CARBonAra 7E 8 [ 5 A5 T AE F St p AL )
WERIER T 56%, {E5ZEAHEAER A Fis3|
T 55%, BIAHER T LH s lA & m. FFE,
WAL N TSR U T (67%) 5K (57%). T
& (61%) FARESE (50%), Hx 5 S 1)k R 2 2
£ Y T

E A A R R AL G R e A R BESE M, AR E
BT EFEE T AR R RS A R
DL E F 3 [R5 1 7 8 Ak 30 45 A ) 32 452 25 1) R 1) £
B () o A DG BC AR R B 05 B U M AT S — ok .
Multiflow SR FH 25 Bl AR 70 Ak 2 32 4 R 8 WP 22 A4S
A, SEILT R AR - FEI A R . SR
[F) £ 1) 5K %, CoFlow filt & K 18 & A% 84 FI| F| ESM3
(25 F AP S I T 450 - 3 0 R 3R A B 1 e ik
FP 23 it 1,
3.3 EEHERINERMIEESHL

JUE Sk BT I B B 2R AR AR e AN g A Tl
T O ERAS T BEE, ERTIRE T
ZHR . V2 R IS 2R T REAE T G AI ER X 3
T PR AL IR 4 ()48 A R S BN &S T e
iR . SR, B ATACK T R B 2R AR
R RV B A E v, X PR 5 8L
EATERZ AR R, A FS S RS G E
F, BRI T A S R Thae s A Mg ). WAL
PR TR 7 3255 B0 X 3 G 22 I R IRARL ol T 3 —
HIBRE . BEAh, MSKBETHAE 2R 8R 3 B A
] o BB E = ST B, X B A EFIRA RN
R, WM SR R ) T AT LSZEL
IHRERM 0, SN T MR I Pk, ML R A
REf Rl B NS A I D Be, T RE T B —EF2E b
WA SR EE I s R e M, AR S A I HER P A T
(1 2 B SR 1

B 7 MR 0, SR B 3 s R
FRDRE G eE . NEMMEARH K, @ittt
EEBRMFHIMLER, DAL E M I, W
IBGIEPE . X T AR SE GRS ) SE AT (A AT
PE. B E A RRE . B H AR T R RARE
2 509, BLERF S (0 8 11 o R e AR AL TN 7
R ERE T e E R %L (W01 FoldX A1 Rosetta) 8% ¥
B )15 5 1% (40 MM/GBSA 1 PBSA), X475
il B A Y B B ST B R R T B SR N
R E M (W AAG) KIS . Bl SEIREE IR R,
5 R VR B SR AR 4 (DMS) 25 1 9848 - KA,

BLAS 257 2] 735 s ok F00I 2 1 o i 1 AR A ) B 2 T
B IXEET7y KRBT L4y B A ST AN e B 4
B

B 2 5] B A8 S0 AR 1 B 15U MR A
(W ENE. 25655/ 15 ) AE BRI T50 A
%5, B, DDMut-PPI' S F 28 A v B i 22 /) % Al
Transformer 4afi 25, FlA & 5 3D KI5k
TR B SR 22 f3 AR R R AR e PR, R4
A 1E [r) R 2 e 5% AR H50H0 SR OR IE 50 45 5 1) e ) Bk
P . MuToN" " SRl JUAT v 2 ) 2% it R s 3
SRIEAR 5| L I FTH] 45 46 728 Ak 5 8 KRR A8 1 3 TR
I M T SARS-CoV-2 AR 5 ACE2 45 &35 A1
FI A, SR, B ) iR T I T Pk
BT IR AR 25 70 A BRI BR A%, A5 28 T 0 A 0
ZERGMERM, JEHES T IIGECHERT
HAETE R P, AR AEOK R B USRI 22 . R4,
DMS #i =B A AR (et 4560
[E. RKiEE. FOEE), Wit —rHESE L
FR53 R X S8 2 bR HE, 3k i SEIAR E AT 55 )
PERIRT, Ve — AT EMU NS TR )R
S PE P T — PR AE AR R T 5 B SRAE KB
LSV EARMN— BRI, REAERIES H
FRAT 55, DADRANRR 2 45 28 208 A 2 1R IR 49 4
GeoStab-suite'®” ¥ 4 FI| i K HLA (1) DMS #7475 Il 45
T 4t —HEZE GeoFitness K27 2] 85 H i B3 M B S W,
TR R 1) 2 AR 2 SR A 5 Bl S, 7EARSS B 1)
s EOR T 1% GeoDDG Al GeoDTm, 27
B X AAG T ATm () 77000 44 B . RaSP'™ th ¢ 2
K FH 3D CNN 44 [ B SRS L2 ) B A R 4544 1)
RAE, PR S RAEAE NN RA B H I 25 Tl
BEAY, DRI 4 RO b (1 A e 1 i B A2 4k
(0 AAG).

M 5 o TR DU AS A ot i e 2 P 2 1 T
PEEGHE, T i 25 A BT IR RS YK AT S5, KK
BB (1 ToAR 28 B (A AR AT U ZR,  DARR U A 3R
FEA T — AL AL, 2 ST 8 7
AR LA 534 Y, 0 MSA transformer. ESM-
1V, ESM-2. ESM3 %5, [ B2 IR B i S ARl
WAET « RENE AR08 5 D) Refiis e
PEAESG, DR A7t (1) S B R A v 1) H IR %6 ]
RERE & K I BTk . ProSST'™ 42 Y — ot J=) 4 25
FIRUF S BAR G & I gmis T i, K R abas ki
NEEER R U R R IR AT (GVP) 4afid, (R
e I 25 A0 22 Sk SO S R S I N AT 2 R
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FIAZH., SEHLAE zero-shot FEARFE g M UM I ) K 47
L. dbAh, ZITEEIE R O R T 8 e B
TG B 54 E A T & 2 Bl AT
% I T TTIZ IS MR R T

Pythia” $ H 4 5 W B AR 22 5] 31 (1 ik M =R
PR %% 2 NS R AT OCHE, T R
RN RE R e . i3t — P,
BA-Cycle! /£ 3 /R 28 2 A 3L AL ik — b 454 I
A, H¥TE - RERNRKERIEDRE
G sE G RN, Bk TEESMESER
()22 5 ) J . ThermoMPNN B4R [ 7 J5 41| Wk AT
% 5 FE ERAGAT S5 R OCHt, (BRH, RA
FPA R A B bR F AR s — B Ak, TR TR
P VRS2 T AT Z 1, TR AR —FF
S50 B ABOT RS 5 2] 4 RE B A A X Ry e AR 5
A It ThermoMPNN X} > 1) ¥ 71 455 78 ProteinMPNN
HEAT AT RO, I REOS BE AF L TN AAG.

4 EERINEFMARE

T D RE TN 2 4 7 41 5 AR B DR ) O
WA, i KRR T A S A B R AE
AL D RE 28 B BT - O A4 AE AR R
RABFIREVIA SRS, WA R R
AR AT B2 it B ST
4.1 BERTHEESY S

B IhBE 7 RAT 55 B AEHIWTE A 2 8 T 1
%, Jrit— B E L EC (B ¥R AS) S5 (IH
I JF R el TKAREGSE ), AU I R AR T
T 07 3 B Al . ProtBERT 2% 12 4% 45 (1) £ ¢
R, BT BERT FIZRHELE, @ #EASTE & di i
A AR AVERE, R 13B S HHE TN, %2
RAIEMRIR LN R SCREL. 7E CAZy (BRI &Y
RS ) B EE A, 2 AT EC g5 i T
R RIL 92%, ML ST 71 Euxd it 77 v (i
BLAST, #EffiZ 77%) $2F+ 15%, JCHXTF 51 FHAL
PR T 30% [ [R5, Tt RefR A E RE. 78
SEYGUGAE T T, B 100 SRR 23 R H K
i )74, ProtBERT Filill t 20 AN 7E B {5 1k (i 55
K. RS S K EC KKk ). BiliEs Rk
5REENE, 18 Mk 8 R I H U R S 1 - 1)
i, YOIy B- 2R L (EC3.2.1.21) it ER H
7E pNPG &Y i, EiEIA 12.5 U/mg, 5 21 B-
1% PR B ROV TEVE (10~15 U/mg) i —2 %
VE 7 AR FUI ] S

42 EAR-EAEEERTUN

AT BFEH ML O TAESS . — & T B R
5Ny FRCAR (5o 1 R ) S G AL
TRERMN MG EAT) (KD E ), HEMR
S T2Vt 5k, ConPLe i i fil & & A i 15
F AL (PLex) 5% ALk N (Con) g, LI &Ky
JEEAE ELAE TR B 1 SE R A PLex 22 2] 8 A
FEA B s, FRE X B 2 ST i KAk 8 2R
Stk GRHE AR B, SRk EE & 0L AR R E
[fH2HL. 7£ PDBbind (¥ £ ( & 4 000+ & ()% -
FC AR 2 AW ah kg ) MR, 45A 47 S 70 i AUC
HiX 091, SEATJ3HUME) RMSE 24 0.5 logkD, I
TAEG 5y T34 L A (11 AutoDockVina, AUC=0.78,
RMSE=1.2 logKD). bA3 Bz 4= K K 1 52 #& (EGFR)
Sy 259 )i B Je (WA HAE FH 4%, ConPLe i
M 254 7 A5 (35 Leu858. Met793 25 ek hk it )
5 X SR AR SEARENT 45 6 A8 A 5608 90% 5 T
W =2 454 1) KD {44 0.8 nmol/L, 11 S2546 W 45 1)
KD {5 1.2 nmol/L, i 2 /NT 30%, i /& 254 15
TR SR T RS B TR R

5 S AREAE

T PR B O BUS SEar PE R A, BT I I
RIZIRBRAR -

BRI« PN SE KR 2470 Transformer
ZERII B VR R NI AR AL EE R T 4 000 N5k 2E 1
KEE B (0 Titin) KB ZHE AW (NZLE
G B, G E SR ER IR PR . X F2EUE
BRKEBAEBSCEMET. GPU Wik, PALKRE
MEAEH BB E T . WMt E ). o 2@ e
Gy Pt AR SRR S T E IR LT %8, AR ARl {E R 4
5 R R A R S5 M i R AN R IRAIRZR .

VAR IR E A . /R Evoformer [1)
A o S I B S R Sy O |5 I SR s T
GRAR . KRFEKDF 1. R EKFE
(R 2 S HE DL R & 5 E B F - RO B AR
HHR N 22 X 28 QAL AN S R B, (AR AN R
ToOml e e e 4544, 1L RE PRI REN S FRE R =M o

MERAS LB ZN A TIRE T %, ARk I B AR AR AY
RERN— N DhRe & rh 514 - P SN E D Re 7R
K “Yeit—NE pH 4.0 FAEALIEY A EE” ),
T BB 30 ) AR e R s AT A S mARE A H
FrIIRERI B B BT A5 4. S — R s il R
e “Fpyl - 5k - Bhaks - Thg” M2 RIES— @8,
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FEaE AT R SEIG IR - B s - BRAIEAR A
ARG

TR AT M R . PR AY I TR SR AK R, o,
T I A3 W T DA EE SRR X 4 R A B e SE I
BOCHEEM “TiReikAL”, ORI A R el {5 AR
SR X

R m s 5ERE . FROBEAREEREAR
A, DX S MR R RRE SR (AR
FeoE R . Thaedds ) BHCR, KRR ARz AL
BEARPARDIREREARFIE.

FERE ARG 20 5] P TR KRR
BT AR A PR, PR B SRR
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