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Language Models (PLMs) have emerged as pivotal artificial intelligence tools for bridging protein sequence and
function. These models treat protein sequences as a "biological language", learning their implicit structural and
functional information by capturing complex contextual dependencies among amino acids through self-supervised
learning on massive-scale unlabeled sequence data. This paper provides a comprehensive review of the core
technologies, primary applications, and future challenges of PLMs. In terms of model architecture, this review
introduces four mainstream paradigms: masked language modeling, which aims to learn contextual representations;
autoregressive models, suitable for sequence generation; inverse folding models, which perform conditional
generation based on three-dimensional structures; and discrete diffusion models, which offer advantages in
generation quality and flexibility. At the application level, PLMs primarily serve two major directions: first, inferring
function from sequence, including functional annotation and mutation effect prediction; and second, designing
sequences from function, which encompasses novel enzyme discovery and de novo design of entirely new proteins.
Despite their rapid development, PLMs still face significant challenges. Research indicates that, unlike Large
Language Models (LLMs), the relationship between the performance of PLMs and model scale is not well-defined.
There is a lack of convincing evidence for "emergent abilities", and in some cases, performance has been observed
to decrease as model size increases. Furthermore, the scarcity of high-quality, experimentally validated protein data
has become a core bottleneck constraining the advancement of these models. Future developments will focus on

more effective integration of multimodal information, such as structure, and on the expansion of high-quality data
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resources, with the aim of achieving breakthroughs in the field of Al-assisted protein engineering.
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T ) B SCAR IR AE [F]— AR R S (A g AT % 5% .
X7, CLEAN %2 1R #EHUR 88 B 5 7 411
SR DyRefid SR, ERFDIRETRAT 55 H 3R
R 1 BE
412 RAEEIT

RAZ VLR T FE AN B 2 N SRR R AR iR
JRUIRE (AR E e WETE. SA AT ) B,
PLMs AEf% M 22 37 5 R R 00 25 1 )5 1) R A2 Dy g
AL AL R AR TR AN ES SR B PR v s 57 R AR T
4.1.2.1  FARARTR

A TE T S b 2 ) B 1) 8 A 7 SRR 2 AT
HAERE /1, PLMs RERE X RAZ AT AR A .
BEABAER, BRI MR TR E DI R R
Ji, D RAR P ISR BE B BT — A3
iR R R E—A “ABR” Kps), H
SR B AR R . (R, 8O T B A 2 3 1)
RAREH PSR EER Z LG, gk v] LB A R A
PIRLRE o XTI 58 o 75 H AR A ) RE T e %
i, MRKERARNTFINEE, FUIBRIEEEA
FRAFRN M P, BT IX— R, £ 3K PLMs #iF
R R T IO A R AN, B4 ESM-1v 15
AP Tranception #5%7 ¥, SaProt #7 P ProSST
R B VenusREM #7  Venus-EEM &7 101 25

®5 BEHFUESRANNATR

4FR [y H s REERR

YIREIERE 751 hiie PLMsifk N2 > # A

FASBET el ViR Prime. FSFP. SESNet. Venus-EEM. ProSST.
Tranception. ESM-1v. ProMEP. EVOLVEpro%

R4 Thie F5 VenusMine. PLMSearch%

Mk it e 527l

ESM-3. ProGen. ProGen3. ProDT. EvoDiff. DePLM-2%4&
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UbAk, B T /R AR T Y B B FSFPY,
HAe ENF AL ARSI T 2 E R/ EA
JR T B R R A AR TR A R MR . I K S B
5 BE AR AR KA SN R S T ProteinGym =y i
BIAENT 6, LB K% T Venus-
MutHub {8 & &R 6 Y e 2
A Y B A B A T B R ) R A S T Ak
Fo HA, VenusMutHub () R PEVEAGHE— DR
TAFESER R AR SER TR R, B
R PERER B SR Z AT SR E = dn, 45
P {5 B I R AE R PR T 508, AR A
BB e SEPE T RO AR, R, %
MR 252 7 24 R0 A PLMs I3EREA, ED7EAb
% 5T R AF I M LA HE B AL RS (epistatic effects),
DA A TR0 37 3 55 B 53 2% Tl e I ¢ 3030 3k A £
KRR R [ R AR T R R 7 1A
4.1.2.2  BAEURSN 1) A AR T

— kU, AR TR NOE R A A B EAR
M REFR AR KIS T i AU AR . PLMs g% M A 5 A7 8k
o R IRAR H 2 2] SO A B DhRe kg, I Hog
i DL 2 ek AR 7 AR BB SO AR RS B, 5%
FROR I P AT 3 vy . A0l K24 ) T PRIME
BAFUE S B DY, HAURER LR REA T 77
DER A5 S AR M R, B RES T 2 48154
()77 BT B TR 2, T A2 1 s 5 45
BT IR, I 30% MR RARRIERFRE .
A iE VB G Gr o FN J) 55 U TH B 3 82 7+ . EVOLVEpro
BAY ) R B B2 STHESE, RS AR A > R s
¥R SR A k. EVOLVEpro B2 PLMs
PRI TR 7 B B RN 1) B S ML A% 5 IR 4
I UEE Wt - MR - N - 2207 A, Refg
MR /D 5 (1) S50 HHE S 2 ST R A 5 D RR R R
R H (S B R AN, METL AHEZE 1 Sy fig
PREHEAG B AL T R RS . R A
AL (AR T A ) BT RIS,
S ) TR A T R AR R M (WnRe R, FRE
PE), NN “PEREIG AR, X fEfS METL
TERRR AN 75 0 /D B S0 s, it REAE /NFE AR5
RS R o SERGIGE, AU 64 4> GFP 4 s,
METL it 5% D v th 2 A~ BoA 1% P 1) s B SRR A,
UEBH T R P B 2 R R A AR T AL B T T
Rz i RE
4.1.3 25T

JX4E AlphaFold2 £ 25 #4 fitill EH A5 7 B Rk

I, B E AR T 2 P HIE 6 (MSA) [N,
T = [FYE 7 5 90 LA [ (orphan protein) R A
. BEAFUE S AN ISR TR o BB .
T PLMs fE TR BE Q&% 5] T S il 2 5 41
WAL R AR, eI T B R R KT A
T = 4 45 0. AR M T AE & Meta AT K I
ESMFold™. iZ A 7E K AUIE 5 17 ESM-2 [ LAl
B, N T A G TR R (folding head), SEIL
T Elu . JoTE MSA IS HI T . BRI SRR
FERSAIC T AlphaFold2, {HAESA [FIVE T FIFIEGL T,
ESMFold )R H . HHEZERE, @EidxEse
SR AL GG P OB 1) MSA 48 Z3475, ESMFold
(P HE R AT B T ORAR T IX PR 3 R AR
AT AR TR B HOE B AT B AT T
B R, W RHASEER (metagenomic
structure annotation), EA A HRMIMEFNE, A
PRI RS ) &5 4 TR0 A S A LR 3 Rt o B
THRKM T H.

B AlphaFold3'" 257 — R4 s 2L (¥ HH 3,
S RPN (A FE PRGN i, B BRI TSR T A A
N RN 5 R T Bl e BEGHIR — A, A 4R
H ) Protenix-Mini B 7 R R T E R R, &
RR SR TR 2$ (381845 . 76 Protenix-Mini-ESM
AR, WFE O ZRE ) PLM(ESM2-3B) itk
AR TR T R 1 MSA 1 % 5 b # sk,
IS — PR A NIZRRRS, 1A 2 2[RI L MSA
B PLM ik N RS 2. EHEFR, W RLog4nst
ik MSA, Sz EE PR T, BE &, Protenix-
Mini 438 I K 1 455 28 22 4 ( W19 /> Transformer 2
B ) FIARAGRRE B CREEUE 2D 1T R FE B 24X
FEWIE ), RV 1%~5% REFERIRTIR N, KiEf&
KT SA . X — R TAERV PLMs AMUEfiR
AL B 00 o) R ) O B, TER S Rk BE
5 CERCR” P, ST A E R T2
SEF N F ) B 5|
4.1.4 ZHAEEFIE

A, BWEFE AT G O FOE SRR S8
MR F AL (LLMs) M4s &, W 72 H1E
ER & R, BRI T T FI /454 3R
hfefs BAE J1. X 2KH8E7, 40 ProteinChat'™ #l
ProteinGPT™, Fu¥FH F LL H 4R 18 & X1 1) 75 =t
EEPATRM . AL AN R AR
B YESE M, SRJE BN XA E A AL A
TEMBEL? 7 B e SR rT Re A TAEH? .
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HEARY PN R IS PLMs H4 25 FR S B dmid N &,
P 5 P ) g [R) S N 31— N R RS R
BEAT B ARO[ o XA AZ B 3 A R Hb BRI T 4
YHE B AT T IR, AR R T — A EOAR
REARIIBENENIER .
42 MIngERIF3

MIBEEI T F1E T 5 BN Thae xBTS, R’
R4E AR T fe, MR MEAIERT . LLF
AW R NI EE B P 5 B 5E 77« BRI ATk
wits
4.2.1 790

B2 98 1) H BRI SR B85 525 DR 20 7 91 e /e
o, R IR R E AT BT R 51 . PLMs A
PSSR T Z0 T S RN ) = R AR AL FE —
TR b BR8 S WL AN 2 1 R D e AR ALt . 48]
AT 38 K B S R T AT K I VenusMine £
AU PLMs 5 = 4e g5 M M A 45 &0 & e R
PLMs $&H (1) 15 405 AE 5 i & 7 51 R AT SR ISR 25
ik, SREVEE S TR & PET /KR Dhfe 1l 4s 1
AR B o IX P 2 2 FE 25 0 AR UL T R 7
G YR () SR, I BT A B A R &
W T 2R AR, SR AR E R T 2
FigIt) PET /KRR, UFBA T 85 (05 5 B e B2 4
D7 E KW fy. AN, PLMSs [RRE AT DL R
BN TP % B A R I 45 AU . PLMSearch”
T — P85 51 i N DO (RN & v, L
FI R TR 2008 5 B2 AR 1 PR R P R AE SR 25— A B
il Y 2 5 (8] 25 44 #H ALL BE (TM-score) ) 455 7Y,
i 15 PLMSearch & % i #2 2] 1% 4 J5 51 L X Oy 7%
BLAST TGk iR A I 2 MR % &R, TEOR BRI =14
ZORE R AR, HORGE L Z T T g
BRI, CHAE KRBT 51 2 7 KRB 450 s
REARALAIR BT o

TEMEIERE 1, U 3 R K 2 SR R A R T RA
FFR I ProTrek BAL U™ 75 2 525 8 111 44 28 J7 THI L
157 #— R . ProTrek & — MHH A
BEEA, el S S E AR T A =4
SR LL R i B ARTE S R M ThRe s B — B — VB
AN X THETS ProTrek MU AEREAT
FE G5 1) 7 I S AE R Lk, B TR A M SE B T 2 3¢
AR E O R R, AT EHEABRES
(1 “BEaE A DNA 5% [k FR s g (1) B S0 )
SR W PE R B B S s B, R R 3 B & R
Thee ik n, ££2 a0 IR LL 7 5 FI 454 00

T FEME, HIhEe BRI EE .
422 Mkt

Mk Bt (de novo design) B 7E A1) i& H H 2R 7
PAEAER] . BB s A Thae M & B B4
EEVEREASiRE=E BPR SO i i
H.. ProGen 5 A P73l i 75 A % Th g br 25 1) 2.8 12
A BT ISR, o T ARYEAE E AR AS AR A
N1 H S a6 56 IE T4F 3% B ProGen £ 1) £
Tl 2 7 V5 T I8l 1) 271 S5 AR AT L 0 R AR B I [R] — 1
K2 31.4%, (HAEARSMSLES H R I H 5 R SR 1 141 g
FHA R EATE T, RO 7 PLMs B& T AERBGH &
(RIRE ST 4 BUER 1 BB A [R)FE R 08 58 I Sk BT HE:
%, 11 EvoDiff™ 2547 G865 7 JC 45 M 15 BRI 4%
R, AMFHIH KA Z Pl S A B B E
Ji . T2 AAS Y RO RS 4 DPLM-2" U] &8 A o A2 B
FFAVRISER, WOk 1 Bt R B Re s 3 B AR E
=4

— LS I AR E R RIRRENERIES
W E R A M. B, ProteinDT 7Y 7 F|
ME B SCARRRIE S EA . E5,
T} b 2% 2 AR ProteinCLAP X 55 SCASFI 2 A i )
PR Fok, AR WSO il F AR
BJE, — MRS ERARYE L EROR A R A T A . 5K
IGUER, ProteinDT £ XA G FHIE A A M. F
FE A H 03 4 5 A A TN 55 22 THAT: 45 R 3R B0 HY
t, BE T RhA SCARME BAE R B TR A
Pinal #54 U B 7 —Fh I B 7%« 1 Sk
FPHRIBAAESIES (0 “B&it— 1 peda X AW
EA” ) BBER— N MRNEORSEERR, ARG
T FH 3 4 B A A R Az A A A & IR 1 T
Fllo X P VEB AR BN A R T AT R,
BRI 7T P B, b B AT v 2
(R SCA R 7 51 A= B3 A vy A AT 5

5 TR NGt AERIERIE

S A B S A 5 U 55 T S T R
T, AHILGE “RAE” A P AR AL BR 1 T
FATR R RE RN B 554 R, AT
FEVEWT IT B AESR B “ F LR S 1) “ BT LR
ARG A “RALFFAE A I - PR SNLH EAT - Py PE
HLAKIGIE” RIS HEZHE, RAR PLMs 2 XU 0GE
127 R Gt e, IR AR MR Lo ) 2
TIRZh R A BT R EAL E JE AT AE AT A5
LERSTE X 7/E /R T 8L il 1 & VAR 137 8
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51 FRIEFMELI: FERARDEFHEDZER
AT R L) AR S AT “ A, B
fiE I R R i gm A 1A A S R BRI,
HH B 5 2 e HME DL S R 8 AR S S
BRlt, W78 U T4 2 AR N R R o i 9 N
AIERMRAARRIE. T, DAMEER B iS85 (SAE) AR
)72 3 TR T REH . B, InterPLM
HEZE U ¢ ESM-2 #7 S F SAE, J& I 2L i
RAEF RN TN EEM S (S, 4
P ) e BEXT SR SE AR HLSE mT AR 1) “ AR AE
XBEHFFCUESE, PLMs [N R SCHiie 8] 17 F
B AR EMFE, XN ESM RN
BT BEE T Rl
5.2 RIRHLBIEEMT: ZiHicIZiE 2YIBEIL?
TERRMNE R 23] T AYEREZ J5, F—4K
B ) 2« PLMs EEAT O, 7255 AR 3 5]
BT, IR AR — DA B RS,
A T3 A g A ez 5 R A 2
Z WU SRR ) T 5 . — WU X ESM-2
R Fe U7 R B, AR 2 AR A R 5 9 B AT
Fefymon, F HH ARG 5 5 RS THR
RS AR, X R B HAT MR T B R g A
XPRERL ARl Wt — DA SRR T X — R .
Gordon %5 "™ K H, PLMs /£ F#f A 5845 AT 45
FRERM, S5HXEAERFHR “ImFFEE” (@
AR L B AL ) BEVIAR G, T X A i 4 3 25 T
SR [FIE T A I AFE SARE . IX EE R4 3L [F] 3%
WY, 417 PLMs 88 /7 3= U5 T HOoh g & 2504 vhodk
G I R ARG CAZ AR, T AR B T s
TR
53 4MIEEMIGE: EESTHESIIERE
SR, ¥ PLMs (R ) 58 2445 T Geitic 4z m]
ReZ2mE 7 H 7 2 B o P 2 & I P B e
Frellsen 55 ) [f) T AR 1) G i 000 B 0 5 4 #2
IS AV ST T RS e . AN TS — 1k
SRR, PEASHES T T SRR B B LR X
5 & AU E I B HAEE (AAG) IR H K
FRo LB FUIEI R, 2R 2 A R 2R A T 7V
FERAL FR B R — N ROE L, X R T
T &5 5 AT 5 e g A AR m A DG . X TR TAETS
WHIAER] T PLMs 2% 2 2@ Gt AU, fE4FE
fE45 (kg T ) AT LN & A2 A Y HE R
PRPA AR (proxy). B AN AT A (1) BEAS v
FRAL TR AR, o T I B A O AR (i

WL T NGE R LR ) F8 T T
6 REPWLR

AXFET 7 5 BTG & A A 2 8 8 B B K
FEThREM = YEghit . N T ibBR S S B ERF &4
FUEERENIR, Wi 2l m S s S A 5l
ZHEEE, Hh s imedguEE, e
HEARM R =R s 27y s
PRI s 8 IS SRR I PERE . [RIAEHL, DhRE(E
B MSA {5 B8 ] DL T3 5 2 O st i 5 A
. AL, BARE SN — MO R 0 B B i
DIRe I FEARFT S, I mr LA F RIS 9 2 1 i 5 8
R RE, HEEIIANEARMINEELH, Hln
ESM-3 #5570 W R T 5 3. £ 6 FI2¢ T Hul
B GIAZHSE BRI E DG SR, 28
A B R G E R LT UM SR - () A E
G RS ETh RS B RN I B B S T AR
ANPHEECRAT, B iy i Kok Kok, Fila,
SaProt £ %Y 1V | F] Foldseek T Bl 85 (A it = 4k 45
M E BN SR F Rk, 55 B8 7 A PHE Y il “ 45
PRI 5" VB RERLS N 5 ProSST A4 Y i it
VQ-VAE ¥ J& i 45 B NSRS, 5F0RS
TR, (2) FIRZEAEH « FFH A X S L]
B3 7R 2 ST E R B Transformer JZ 7 5] N A1 345
A5 E. Fltn, LM-Design B8 ¥ 5@ i &2 ¥k &
FIWLAE 1 5 AR Y AR AR BT 91 B B 285 G 45 K4 G b
PR AL 23 1845 2 5 PromptProtein 15 %Y ™) 44 45 #y
RS B9t N AL R &, 46 A E| Transformer
)2 5| SRR 5] 3 ESMAIF 45578 M Al ProteinMPNN
PR U SR I gmi 2% - FRAD RS2, fEMRRD RS 1
— I AR X B S Y D 2R RN SR R
(3) Hrth )2 X 55 - W S ) 2 H bR R AL, 7L
AR A A RO 55 P A 5 450 1 ThREIIRAE. 41
U1, OntoProtein #5784 ™ | F % Lk 2% S ¥ & A i 7
B FRAE 5 5 R AR DR SR AT 55, (ERAERR 0
Gm R0 THEIE 3L ; ProTrek #5787 J@ ik = BLAS% bh 2
3, B, GRAERE S TR G — B —
MNZSIE], SEIEERESRR.

7 HERSRE
JE R ARUE SR BT T RKIR R,
BT T A B AR PR AR T B ) AR 3 1)

IO H O S AR R Bk 1 A, R ERE T
AR S AR R R
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7.1 BIE)ER

1 H ARG S B, b Ee® 5
G R IR B R ARE & A S O R e K
HIFH. ¥ REEER TR R SRS,
VI GRER & vt B BE IR 2 [ A A 3 0] T () A oK
Fo M0 “TRIL” R AR R R S — I 5 RS
DRI N R AR R MES R 2
Wraey. KRR R PIEAGRO, BeJJR,
Bl) 5 SO O B R ABAR A [F4R

AT, EEFE SR NY RER S WIS
HEHWEREN . SAW7, 4 Cheng % ™ () T
VERSERIBAESE T PLMs HHAEAEY JE e < BEE IR
RSHRITHE R,  TUIZRAT 25 B4 5% s E
BN RAE WL, BOIZR B PRI R AR E
AN N AE S RE e . BE TR, PLMs
T fe 5 S8R IR IR B IEA G OC R . i,
Chen % " 7EVF Al xTrimoPGLM B & 3, A A 5] —
o 5 LG R AT S5 M REBE AR R I R ks, Bl
0 73 B A 25 2 I LR A e T R 8 D S T o (1) 30 4
L%, [FFE, Hesslow 25 0 75 RITA # 8 (F 0 5%
Hh R U %2 21 il D) BE S R AR Th e PINAT 5 A7 AE T
L7, HEREG KR # A . Lin 55 P X% ESM-2
RV A5 T 2RI 45 e, BPRIALERRRE 2
HO N B T BE 2%

Zx FRA, AT M ORAE B ARG R AL
RILEH R R 5, DRt AR R L R
WAE SR B U AR AR B 8 70 ik . BRI BE S
R R R I LI G 1) SR DR AT e 2 R B P A1 S

6 SINIMBEIREEMNERRIESRE

A FRAEI NS N5
ProteinBERT™” 45K Thie FPA RN
ProTrek!” JPH. 45k, Difie JFBIRN
PromptProtein™" ERY. JE FEHHRAN
OntoProtein™ | FFHIRAN
Prime"”! MR RASETE
PeTriBERT™ 4k FEFIRA
MIF-ST™! 4k FEFIERA
ProteinMPNN™ gt WS
ESM-IF™*! 45k SUE RS
LM-Design™” | A
SaProt"™ gt 2N
ProSST"™ 4ty RAZBLT
AlphaMissense™” 45k, MSA RABT
PoET™ 4hF. MSA JFHIRA
ProMEP™ 4k RABL

SRIE S AR B AT 25, 5 NLP & H B
MBS H. INIBES A, |EARIhae 2
RNENEAES, BEMNES A EE. L
Fabr (e RV R B, RMSE) KR Hh s e 1 57
A rERER T, X —AFENEARLE, mak
CINTEEIE” (ZRAS, DAk e DU 20 0 B 42 .
AT A G Z B R oG, HIhRE X =4
SRS HRE, FEFHIPEAEREE HKREK
TS| ealla =X 7/ L N S O TSt 1 e ke |
Mbi, AR CEIEE AN RERERE | “ R4
AR, R R R K B 2 DL 5E A 0L A i e R AR
AR R SR O IR R s BB A R A &
AIREAL S RO R ZE A E A R A, I R R K R Y
A Gy it A X g s, FEZ AR T . X
SEERI R AL R R B 7 AR HOE Z RSO, Ay R
A5 KA T B M DA AT SR PO 25, A8 /NS I
FR 7Y 2 AT BE A P
7.2 #iEEIRR

HARIE 5 MR A RS SR e R, A
By LR = BRI F P K. BRI
SRR P BRI R R AR BUE S B AR T ORE
ARG E R, 25 808 S shl B e Eds
EAHL, SEEE A AT R A 0 s s T AT
AR B ) R T, AN [REOHE X S A
IR E XARHE M AR G —. 1, RefSeq Hid % "
M4 RNA € 8 E e a1, i HAR R 7=, a0
Ensembl ¥4 & ¥, W] ALK 45 DNA Bk 5256 $odf i
7. {E UniProt $d & P> v, HIF4 3T sis
KAEME AR FINEA A %Y, EeBiekz
R 7 D A PR B RIJR EE X, = 28 1) D Re 56
WESCHRF o X PP B AN 2 5 5 2 ) AR ) XU 1 247,
WEERS T EAME S BN E.
7.3 WRimIE RO R

W oy PR I o TR A B AR S B R HE
B, HETH T IIZRE A E 5 R 0 EdE £ 2R E
THMATN AR, TR SR G 57
EHFRATRES A E . BORAE: (&R, &k,
SRIR . wRAE ) HH AR AT SR R IR R G
eSS H AR E A AR, K
HLA IR 2 FEME I R 308 2 SR TH I M B — AN
BV AR IR SR RO, RRRS PR AR A AE T
A= IRSE N IIRE 7, Wor B R A AR e b A
WERE A

FERR B, W RRCRAEB RS (R
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15300 °C LA &), WEIAE 1R N K 8 1 0T R I R
& tataE . MR, XRBRELEERA
PR B 5 R Ve R AN R A B =, o i i 5
MR AR A E IR, MR AR B4R R 1k %Y,
SR, A OCF A HHE 78 A 3L 50 HE & (40 UniProt.
BFD) H ¥ 78 o5 A, 815 8 F 0TS 5 AL HE DA
T35 2] KR E T RFAE

ERmEAESRG T, 0 B E e H IR
A (FTIA 1100 SRR ), RGNS RN &
H R 5% AV B EANRPTF I 0m 5507
FRME. BEAARM, X A B A E L b S
TRSARFR s VE A BAE A . AR AR R 2 4y
A KRR N P e BB A 7R 2 3] AR AR
MO FoE 15 e iR R AR B i U R A F
YrfE, 3 H T G AT 7 s AR D E oy, W]
e 2> T B BRI =y 1R 137 5% I AR i 5 Tl 12 g
AR AR ML KR “MEER
TR P RS “amsbE T SRS TT R IR
RS ARSI, RGRE TUVRY. K& F4A
MERAEYIREA, 1E 6 000~11 000 KK X 53k 45
A 2 000 1 FEA, H 2 FEVE = B IR N G AE P 5L
P e U, XA ) R RIE N FRAEAR B Ah T
=&

FEBIEFR S, I W] (pH 9~11), FERR ML
A T SR L I R AT R AR . D, A
TR IV HFAREE (Gymnocypris przewalskii) 1 5 £h
WA FRS SRS EE LPTEA Ak
MR R A, Ha B T 7 1) ek D 6 2 R 5 RS 2
fR . BEIMRAE IR S ABRRAE:, M1 84k g
fap oA VOO, R e R B AR AL pH AR S 45 4
AR o, ERIRE A 5k 17 E T I 250 R o e
e FEAHAL .

TERTEA BT A, W ER PR X B Tl R 4 I 7K
(pH 1~2), BEREMEARGERBR FHE5E)E
Hhe . BERURIL, IXRE AR E SR R
FEULTY RS € oy e e, (] B 8 iR S /KA O PN 42 )R
diGhe ), XFFHERIE R TR S
WA EEEPLE] U X S PR A 2 5 Ak
T ZEEWE N, HH EH R R H A
Yk,

MEHE Z PR R, Rom IR A A
J& TSR E s, Wi TR R B
NG FEEZ B Z R SIS R4
RGPENNE A TUE S BAMUIZR, A A R R

BMAEFEMAE THEHE R, HFRASEEERD
FASE METRIN . Dh e RE S € m) vk ) R EE
KRR E G EB SRR K. pH 53
B BE I 2 U5 8 SR e, 45 S B o E SR I 2%
PEAIE 5 B, DLSEIONS B S AR M 55 5 By At
R E T .
74 fURFEENEEE. BEFIST

JRE PLMs FE RS AT 15 SR BE Ak 7™ 1) 777 T 22 0 4
o, (HERIESCI “H&FRErt” TR, S
WA J LR Z IR R 2 0] AR AR Rl . XA
FRZHIARAL, B 2R 730 20 =8 E A

T2, WA AN “Geitiid” ik m) “ et Efg” 2
7T PLMs AJi 2 @S gt Mo 2 2 48, B
ATTad I i 12 i B A S T R SR I Ok “F I
R, T EE AR e R B ()RR
PEL B 15 AR ) RHATHERE . XM 2 R SRR Y
TETXT IE H AR P51 (de novo design) B2 55 7= 42 “4)
W AR E B A REAE Y EERE R, (H
TEAEY EE Frh 4 B BT D RE . R RIBETT
e EAR R ks v R AR P EE 29 3R (differentiable
biophysics) i = ik A 15 5 58 1) 458 2% R Ho,
RN 2] “BABRINEB”, HRE>] “He
ARERSTEARAE " FLUR, Bt N i =y 2 G AE T 32
27 MEE “#eBh 7. B H IR S HOM i £ 1)
7 J& (scaling laws) 744912 4008 AT e 110 11 122 Bm R
366 Dok PR ARGz, R Ay e o ) U SIS B s B AR 7K oz T
EAG LI SCATSRE B SR PR, ARR TG K
EN “ RN R B MR R B ) ¢ E BN R REIR R 7
KA R T PLMs “ #7007 —— BRI 3%
>] (active learning) F1 DUH-HRARALHESS, iEAEALREME
WO B SRR S, EBiHIEIRLE “ A ReiE R
BB WA E T S AT IR SE IR e . X “
BB (dry-wet loop) FUIEARAE S, B & R EHE
TR, SEINFEARZZ S oG8, e, REREHNR
A “HBEY 7. WA IR 8 R 2B S T A
RA &AL T ARG I “ BT 7, i 2
T REAE A IR CRMCE T (FEA), LA
S ARG B IR TR R ) T A0 A 0] X Rh “ SR AE
Fofh e BRI T B A s R S (fitness
landscape) 4= 30 (3. AR K BIE 7 7 2 — & F)
VBB A BOR B A SR, Bl RGiMEH
WCER RAR SIS R IR R RS, B “ A4 R4l
BRI, IR TR BLRLLE SR T S S
PERTRELL ) “A a2 IR O E
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8 B4

A E S AR N TR R S AR IR AL
SCRIRTHY UK, ERREER A A - TR 1ok
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