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摘　要 ：近年来，受自然语言处理领域预训练模型的启发，蛋白质语言模型 (PLMs) 已成为连接蛋白质序

列与功能的基础智能工具。蛋白质语言模型将蛋白质序列视为一种“生物语言”，通过在海量未标注序列数

据上进行自监督学习，捕捉氨基酸之间复杂的上下文依赖关系，从而学习其隐含的结构与功能信息。本文

综述了蛋白质语言模型的核心技术、主要应用与未来挑战。在模型架构方面，介绍了四种主流范式：以学

习上下文表示为目标的掩码语言建模；适用于序列生成的自回归模型；基于三维结构进行条件生成的逆折

叠模型；在生成质量和灵活性上更具优势的离散扩散模型。在应用层面，PLMs 主要服务于两大方向 ：一

是从序列推断功能，包括功能注释和突变效应预测；二是从功能设计序列，包括根据功能挖掘酶和从头设

计蛋白质。尽管发展迅速，PLMs 仍面临显著挑战。研究表明，与大型语言模型不同，PLMs 的性能与模型

规模的扩展关系并不明确，缺乏涌现能力证据，甚至存在性能随规模增大而下降的现象。此外，高质量的

经实验验证的蛋白质数据稀缺已限制了模型的进一步发展。未来的发展将聚焦于更有效地融合结构等多模

态信息以及扩充高质量数据资源，以期在 AI 辅助蛋白质工程领域实现新的突破。
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Language Models (PLMs) have emerged as pivotal artificial intelligence tools for bridging protein sequence and 
function. These models treat protein sequences as a "biological language", learning their implicit structural and 
functional information by capturing complex contextual dependencies among amino acids through self-supervised 
learning on massive-scale unlabeled sequence data. This paper provides a comprehensive review of the core 
technologies, primary applications, and future challenges of PLMs. In terms of model architecture, this review 
introduces four mainstream paradigms: masked language modeling, which aims to learn contextual representations; 
autoregressive models, suitable for sequence generation; inverse folding models, which perform conditional 
generation based on three-dimensional structures; and discrete diffusion models, which offer advantages in 
generation quality and flexibility. At the application level, PLMs primarily serve two major directions: first, inferring 
function from sequence, including functional annotation and mutation effect prediction; and second, designing 
sequences from function, which encompasses novel enzyme discovery and de novo design of entirely new proteins. 
Despite their rapid development, PLMs still face significant challenges. Research indicates that, unlike Large 
Language Models (LLMs), the relationship between the performance of PLMs and model scale is not well-defined. 
There is a lack of convincing evidence for "emergent abilities", and in some cases, performance has been observed 
to decrease as model size increases. Furthermore, the scarcity of high-quality, experimentally validated protein data 
has become a core bottleneck constraining the advancement of these models. Future developments will focus on 
more effective integration of multimodal information, such as structure, and on the expansion of high-quality data 
resources, with the aim of achieving breakthroughs in the field of AI-assisted protein engineering.
Key words: protein language model; model architecture; protein function prediction; protein engineering

1　引言

目前，人工智能技术和数据驱动的研究方法被

广泛应用于研究蛋白质序列、结构和功能的关系，

其里程碑式的蛋白质结构预测模型 AlphaFold[1]，解

决了长期困扰科学界的蛋白质折叠问题，能够以高

精度预测蛋白质的三维结构，极大地加速了生物医

学研究，其主要开发者 Demis Hassabis 和 John Jumper
荣膺 2024 年诺贝尔化学奖 [2]。AlphaFold 作为蛋白

质领域的代表性 AI 模型，揭示了蛋白质序列与结

构的关系，更进一步地推动了对蛋白质序列与功能

之间关系的研究。在此背景下，蛋白质语言模型

(protein language models, 简称 PLMs) 作为一种能够

连接蛋白质序列与功能的强大 AI 工具，受到了学

术界和工业界的广泛关注，并得到了飞速发展。

PLMs 的出现为理解蛋白质序列如何决定其生物功

能，以及如何根据所需功能挖掘或设计相应序列等

蛋白质工程的关键研究问题，提供了全新的工具。

PLMs 借鉴了自然语言处理领域大模型的成功

经验，将蛋白质序列视为一种“生命语言”，通过

海量的序列数据进行自监督学习，从而捕捉到蛋白

质序列中复杂的模式和语义信息，生成通用高质量

的表征。在预训练阶段，PLMs 在大量的不带有功

能标签的蛋白质序列数据上通过语言建模任务进行

自监督任务学习，以捕捉语言的深层结构和语义信

息。具有代表性的两种语言建模是掩码语言建模 [3]

(masked language modeling, MLM) 和自回归语言建

模 [4]( 又称因果语言模型，causal language modeling, 
CLM)。MLM随机遮盖蛋白质序列中的部分氨基酸，

要求模型根据未遮盖部分的氨基酸序列来预测被遮

盖的氨基酸，若模型预测错误，则施加惩罚，从而

迫使模型学习蛋白质序列内部氨基酸之间的上下文

依赖关系。CLM 则要求模型根据序列中已出现的

氨基酸来预测下一个氨基酸，这种单向的预测机制

使得模型能够学习到序列的生成模式和长距离依赖

关系，适用于全新蛋白质序列生成或序列补全等任

务。通过预训练，PLMs 能够深入理解蛋白质“语言”

的语法规则，这些预训练模型可以直接应用于各类

生物学任务，或者针对特定的下游任务 ( 如蛋白质

功能注释、突变预测或家族蛋白生成 ) 进行微调。

在微调阶段，研究人员通常会使用少量带有标注数

据的数据集进行迁移学习和有监督训练，从而调整

模型参数，使 PLMs 更好地适应特定的任务需求。

相较于传统的机器学习模型，PLMs 的优势在于其

无需手工构造蛋白质序列的特征。相反，PLMs 在
预训练阶段充分利用了丰富的无监督蛋白质序列数

据，不仅能够生成更为通用的表征，还能降低下游

任务对标注数据量的需求。此外，与自然语言模型

类似，随着模型规模的扩大 ( 例如从百万级参数量

提升至亿级参数量 ) 和训练数据量的增加，PLMs
的语言建模性能也呈现出可预测的提升，符合“扩
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图1  蛋白质语言模型综述框架图



生命科学 第37卷1520

展定律”(scaling laws)[5-8]。

本文围绕着蛋白质语言模型的分类、应用和发

展展开，从语言建模目标和实际应用场景两个维度

对蛋白质语言模型进行分类，并讨论了蛋白质语言

模型的最新进展、面临的挑战和未来展望 ( 图 1)。

2　训练数据

蛋白质语言模型的性能与其训练数据的规模和

多样性息息相关。正如自然语言模型需要海量的文

本语料库，PLMs 的强大能力同样根植于对亿万级

别蛋白质序列数据的学习。然而，近年来随着模型

规模的迅速扩张，高质量训练数据的稀缺已成为限

制其性能进一步提升的“数据墙”(data wall)[9]。本

节将概述 PLMs 训练数据的主要来源、发展趋势以

及为突破“数据墙”而构建的大规模蛋白质数据集。

最初，PLMs 的训练主要依赖于公开的蛋白质

序列数据库，其中最核心的是 UniProt 知识库及其

经过聚类去冗余后形成的 UniRef 系列数据集 [10]。

例如，被广泛使用的 UniRef50 和 UniRef90 是众多

开创性 PLMs ( 如 ESM 系列 ) 的训练基础。这些数

据库整合了来自全球学术实验的成果，为模型提供

了宝贵的初始数据。然而，这些传统数据库相对于

宏基因组数据库数据量仍显不足。

为了突破这一瓶颈，研究人员开始构建规模空

前、专门用于 AI 模型训练的蛋白质数据集。如图 2
所示，这些数据集通过整合多个上游数据库 ( 如
UniProt、MGnify 宏基因组数据库 [11]、JGI IMG[12]、

PDB 结构数据库 [13] 等 )，并应用先进的生物信息学

流程进行挖掘和处理，极大地扩展了可用于训练的

序列空间。这些为训练 PLMs 而生的大规模数据集

合并了来自不同源头的数据，其规模通常达到了数

十亿级别。例如，Dayhoff Atlas[14]包含33.4亿条序列，

Profluent Protein Atlas v1[15] 包含 34 亿条序列，OpenMeta- 
Genomic[16] 包含 31 亿条序列，为 ESM-3 模型构建

的 ESM-3 dataset[17] 拥有 27.8 亿条序列，BFD[1] 数

据集包含 23 亿条序列，UniMeta200B[8] 则整合了

20 亿条序列。即便是主要面向结构预测的 Colab-
FoldDB[18]，其序列量也达到了 7 亿。这些超大规模

数据集为训练更大、更强的 PLMs 提供了可能。

3　模型架构

从概率的视角来看，PLMs 是一个用于描述蛋

白质序列分布的模型。PLMs 学习自然界中蛋白质

序列的潜在概率分布 p(X)，其中 X=(x1,x2,...,xL) 是由

氨基酸组成的序列。通过在大量数据上进行训练，

模型能够捕捉到决定序列有效性的规律，包括进化

所偏好的氨基酸组合、结构基序和功能模式等。该

分布具备两个功能：(1) 判别：评估一个给定序列

的似然度，即判断其是否像一个真实的蛋白质；(2)
生成：从这个分布中采样，生成全新的蛋白质序列。

此外，为了高效地建模蛋白质序列的概率分布，

PLMs 在学习过程中还将离散的氨基酸转换为信息

密集的连续向量表示，即嵌入向量 (embeddings)。
与传统的独热编码 (one-hot encoding) 等简单的查表

式映射不同，PLMs 生成的嵌入向量是上下文感知

的，即同一个氨基酸会因其在序列中所处的上下文

环境不同而获得不同的向量表示。蛋白质序列中所

有氨基酸编码向量构成了蛋白质的表征。这些表征

在一个稠密的高维空间中，编码了关于蛋白质结构

倾向、功能角色和进化关系等宝贵的生物学信息，

因此可以直接作为强大的特征输入，服务于各类下

游预测任务，例如结构预测、功能注释等。

不同的模型架构通过各异的数学范式来实现上

述的判别与生成目标。下文将分别探讨四种主流架

构：以学习深度上下文表示为目标的掩码语言建模，

以直接序列生成为目标的自回归模型，以及在它们

基础上进一步发展而来的、用于条件生成的逆折叠

模型与扩散模型。

3.1　掩码语言建模

掩码语言建模 (MLM) 是一种通过在输入序列

中随机遮蔽一部分氨基酸，训练模型来预测还原这

些被掩盖的原始氨基酸，从而学习氨基酸的表征和

蛋白质序列的表征。为了准确预测被掩盖的位置，

模型必须深刻理解该位置两侧的上下文信息。这种

双向的上下文依赖性，使得 MLM 能够学习上下文

感知的氨基酸嵌入表示。表 1 列举了目前常见的蛋

白质掩码语言模型。

在技术实现上，与自然语言类似，MLM 通常

采用基于 Transformer 编码器的架构，如 BERT 及

其在蛋白质领域的变体，例如 Meta 团队开发的

ESM 系列模型、西湖大学开发的 SaProt 模型、上

海交通大学团队开发的 ProSST 模型等。其训练过

程遵循以下步骤：首先，对输入的蛋白质序列 X 进

行随机掩盖，产生一个被加噪的序列     。具体而言，

约 15% 的氨基酸会被替换：其中 80% 被替换为一

个特殊的 mask 标记，10% 被替换为一个随机的氨

基酸，剩余 10% 保持不变。这种策略使模型不仅

要依赖上下文，还要关注被预测位置本身的表示。
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模型的目标是最小化在被掩盖位置 M 上的交叉熵

损失，如公式 1 所示：

其中，LMLM 表示掩码语言建模的损失函数；M
表示被掩码的氨基酸位置集合；     是经过掩码处理

后的输入序列 ；xm 是位置 m 处的原始氨基酸 ；

p(xm|    ) 是模型根据加噪的序列     计算出的、在位

置 m 出现原始氨基酸 xm 的概率。由于 Transformer
编码器的自注意机制能够同时处理序列中的所有位

置，模型可以整合来自左右两个方向的全部上下文

信息来做出预测，使 MLM 训练出的嵌入向量能够

编码丰富的结构和功能信息，成为各类下游预测任

务的高效特征提取器。然而，由于训练和预测之间

图2  主流蛋白质数据集的来源与规模

表1  基于掩码语言建模的PLMs
名称 预训练数据 模型架构 参数量

TAPE[19] Pfam2019[20] Transformer 38 M
ProtBERT[21] Uniref100[22]/BFD[23] Transformer 420 M
ESM-1b[24] Uniref50[22] Transformer 650 M
ESM-1v[25] Uniref90[22] Transformer 650 M
ESM-2[26] Uniref50[22] Transformer 650 M~15 B
ESM-C[27] Uniprot[28]、MGnify[29]、JGI[30] Transformer 300 M~6 B
CARP[31] Uniref50[22] CNN-Transformer 3 K~640 M
ProtT5[21] Uniref100[22]、 BFD[23] Transformer 3 B~11 B
ProtAlbert[21] Uniref100[22] Transformer 224 M
ProtElectra[21] Uniref100[22] Transformer 420 M
PMLM[32] Uniref50[22] Transformer 87 M~715 M
Amplify[33] Uniprot[28]、OAS[34] Transformer 120 M~350 M
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存在 [MASK] 标记的不匹配，以及其非生成式的本

质，MLM 本身不直接适用于序列的生成。ESM-3
模型 [17] 通过动态掩码调度改造了 MLM 任务，使

其能够用于蛋白质序列的生成。

3.2　自回归语言建模

自回归语言建模是另一种主流的序列概率建模

范式，其将序列的联合概率分布 p(X) 分解为序列中

每个氨基酸的条件概率的乘积。依据概率论的链式

法则，一个长度为 L 的序列 X 的概率表示如公式 2
所示：

其中，x<i 表示在位置 i 之前的所有氨基酸子序

列 (x1,x2,...,xi-1)。在位置 i 出现某个氨基酸的概率，

取决于它之前的所有氨基酸。这种从左到右 ( 或从

右到左 ) 的单向依赖性被称作“自回归过程”或者

因果语言建模。表 2 列举了目前常见的蛋白质掩码

语言模型。

在架构上，自回归模型通常采用 Transformer
的解码器 (Decoder) 部分。在训练阶段，模型的目

标是最大化整个训练序列的对数似然，即最小化负

对数似然损失，如公式 3 所示：

其中，LAR 为自回归损失函数，即整个序列负

对数似然的累加。为了保证严格的单向依赖性，解

码器中的自注意力机制会使用因果掩码，确保在计

算位置 i 的表示时，只能关注到 i 及之前的位置，

而无法看到未来的信息。自回归语言模型凭借其连

续生成的特性，天然适用于蛋白质序列的生成任务。

一旦模型训练完成，就可以通过迭代采样的方式生

成新序列：从一个起始符开始，模型首先预测第一

个氨基酸的概率分布并从中采样；然后将采样到的

氨基酸作为下一个时间步的输入，继续预测第二个

氨基酸的分布，如此循环往复，直到生成一个终止

符或达到预设长度。此外，在生成的过程中可以通

过 Prompt、微调等手段使其生成具有特定功能的蛋

白质。ProtGPT2 模型和 ProGen 系列模型是自回归

蛋白质语言模型的代表，它们能够生成功能多样的

全新蛋白质序列。ProGen 模型通过在溶菌酶家族蛋

白上微调，能够生成全新的溶菌酶序列。基因组语

言模型同样可以生成蛋白质，例如 Evo 模型 [39, 40]，

通过在基因编辑酶家族上微调，能够生成全新的基

因编辑酶序列。

3.3　逆折叠语言建模

逆折叠语言建模是一种有条件的蛋白质生成的

语言模型。给定一个期望的蛋白质三维骨架结构 S 
( 通常由 Ca、N、C、O 等骨干原子坐标定义 )，推

断并生成一个能够稳定折叠成该特定构象的氨基酸

序列 X。此任务常被直观地描述为结构预测的逆问

题。从概率视角来看，逆折叠模型的目标为学习条

件概率分布 P(X | S)。在实际应用中，此概率分布

既可以作为生成器，通过从该分布中采样，可实现

全新的、定制化的蛋白质序列设计；其二，作为评

分函数，可计算一个给定序列与目标结构之间的适

配似然度，为蛋白质工程中的序列优化提供先验。

表 3 列举了目前常见的逆折叠语言模型。

在架构实现上，逆折叠模型通常遵循编码器 -
解码器 (encoder-decoder) 的设计。编码器的功能是

将输入的原子坐标这一原始三维数据，转化为一个

能够被后续模块有效利用的高维向量表示。由于蛋

白质结构具有图状拓扑特性和空间几何关系，通常

采用图神经网络或基于等变性的网络作为编码器。

以 ESM-IF 模型为例，其 GNN 编码器将残基视作

图节点，根据空间邻近关系构建边，并将残基间的

相对距离和方向编码为边特征。通过在图上执行迭

代的消息传递，每个节点的嵌入向量得以捕捉其局

部三维结构信息。

表2  基于自回归语言建模的PLMs
名称 数据库 模型架构 参数量

UniRep[35] Uniref50[22] mLSTM 18.2 M
ProtGPT2[36] Uniref50[22] Transformer 180 M
ProGen2[37] Uniref90[22] Transformer 151 M~6.4 B
RITA[6] Uniref100[22] Transformer 86 M~1.2 B
Tranception[38] Uniref100[22] Transformer 85 M~700 M
xTrimoPGLM[7] Uniref[22]、ColabFoldDB[18] Transformer 100 B
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解码器部分则通常采用自回归的方式，基于编

码器输出的结构嵌入来逐个生成氨基酸。在生成

第 i 个氨基酸 xi 时，解码器不仅会接收其先前已生

成的氨基酸序列 x<i 作为输入，还会接收编码器提

供的结构嵌入向量 HS。因此，其条件概率可以表

示为 p(xi|x<i,S)。整个序列的生成概率是这些条件概

率的连乘积。在训练阶段，模型的目标同样是最大

化整个训练序列的对数似然，即最小化负对数似然

损失，如公式 4 所示：

其中，S 代表给定的蛋白质三维骨架结构条件；

           表示在结构约束 S 和前序序列 x<i 共同

作用下，生成第 i 个氨基酸的概率。通过在大量的

蛋白质结构 - 序列对上进行训练，模型能够根据提

供的结构，生成高度匹配目标结构且具备天然序列

特性的氨基酸序列。 
然而，这种依赖于结构的建模方式存在一定的

局限性。首先，高质量的PDB结构数据仅约 20万个，

远比序列数据稀缺，限制了模型学习蛋白质空间完

整多样性的能力。其次，对于功能并非由单一静态

结构介导的蛋白质，如包含本质无序区的蛋白，基

于静态结构的设计方法本身就是不适用的。

3.4　离散扩散语言建模

离散扩散模型 (discrete diffusion model) 是近年

来新兴的生成模型，其通过学习逆转一个逐步向数

据中注入噪声的“前向过程”来实现高质量的样本

生成。在应用于蛋白质等离散序列数据时，这一框

架表现出天然的灵活性。具体而言，前向过程通过

逐步添加随机噪声的方式扰动一个真实的蛋白质序

列 X0。与应用于图像的连续高斯噪声不同，离散扩

散根据一个预设的状态转移矩阵 ( 如均匀突变或基

于 BLOSUM62 的突变矩阵 ) 来改变氨基酸的类型，

直到序列 Xt 变得与随机噪声无法区分。相应地，一

个参数化的神经网络，通常是 Transformer，被训练

来学习“反向过程”，即从一个被加噪的序列 Xt 预

测出加噪前一步状态 Xt-1。生成过程则从一个完全

随机或被掩码的序列 XT 开始，通过迭代地应用这

个学习到的去噪网络，逐步提纯序列，最终生成一

个全新蛋白质序列 X0。

表 4 列举了目前场景的离散扩散蛋白质语言模

型。EvoDiff 模型是一个完全基于序列的扩散模型

框架，在训练时仅利用序列数据。其证明了离散扩

散语言模型在学习蛋白质序列方面的可行性，并且

说明模型能生成多样化、结构合理且覆盖自然功能

空间的蛋白质，甚至在不依赖任何结构信息的情况

下，仅通过序列条件就能完成对功能基序的骨架构

建。DPLM-2 模型将离散扩散框架扩展为一种多模

态基础模型，能够同时生成蛋白质的序列与结构。

其能够生成结构的关键在于其引入了一个结构标记

器，将连续的三维坐标转换为离散的符号。通过对

拼接后的序列 - 结构符号进行联合去噪学习，

DPLM-2 能够同时生成高度兼容的氨基酸序列及其

对应的三维结构。

综上所述，四种语言建模架构在建模目标、条

件信息利用和应用场景上存在显著差异。掩码语言

建模通过双向上下文信息学习高质量的氨基酸表

征，适用于功能注释、突变效应预测等下游判别任

务，但其非生成式的本质使其不直接支持序列生成。

自回归语言建模基于单向因果依赖逐个生成氨基

酸，这种从左到右的生成机制使其天然适合从头设

表3  用于逆折叠的PLMs
名称 训练数据 模型架构 参数量

SPIN-CGNN[41] C.A.T.[42] GNN-Transformer 1.53 M
ESM-IF[43] AlphaFoldDB[44, 45] + C.A.T.H[42] GNN-Transformer 141 M
ProteinMPNN[46] PDB[13] MPNN 1.68 M
PiFold[47] C.A.T.H[42] GNN 5.8 M

表4  基于离散扩散生成的蛋白质语言模型

名称 预训练数据 模型架构 参数量

DPLM[48] UniRef50[22] Transformer 3 B
DPLM-2[49] AlphaFoldDB[45]、PDB[13)] Transformer 3 B
EvoDiff[50] Uniref50[22]、Openfold MSA[51] Transformer 640 M
TaxDiff[52] Uniref50[22] Transformer -
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计和序列补全等生成任务。逆折叠语言建模以三维

骨架结构为强约束条件，实现从结构到序列的映射，

主要服务于结构导向的蛋白质设计，但受限于高质

量结构数据的稀缺。离散扩散语言建模通过学习逆

转噪声注入过程来实现序列乃至结构的生成，在生

成质量和多样性上具有优势，尤其适合多模态蛋白

质生成任务，但其迭代去噪的推理过程通常比自回

归生成更为耗时。在训练数据需求上，掩码和自回

归模型仅需序列数据即可训练，数据获取相对容易；

逆折叠模型则依赖于结构 - 序列配对数据，数据规

模受到一定限制。

4　应用场景

蛋白质语言模型的应用围绕着蛋白质序列与结

构三者之间相互关系开展。这些应用可以被归纳为

两个对偶方向：从已知的序列推断其功能，或者反

过来，从期望的功能出发，设计出满足要求的序列。

表 5 总结了 PLMs 的主要应用场景及其代表性模型。

4.1　从序列到功能

根据蛋白质的序列预测蛋白质的功能是 PLMs
应用最为广泛的任务。其中两个典型的案例是功能

注释和突变设计。

4.1.1　功能注释

功能注释指针对序列数据库中仅包含测序信息

的蛋白质。传统的功能注释方法主要依赖于序列比

对来对蛋白质进行同源搜索，但当一个蛋白质与其

已知功能的同源物序列相似性较低时，这些方法的

精度会受到影响。

PLMs 能够为任意的蛋白质序列生成表征，这

些通用的表征蕴含蛋白质的功能信息。利用 PLMs
将蛋白质序列编码为信息丰富的嵌入向量作为下游

机器学习分类器的输入特征，结合具体的功能注释

数据集和机器学习或者深度学习算法，即可通过微

调获得功能注释的模型。在实际的应用中，研究人

员只需收集一个带有功能标签 ( 如 GO 标签、EC 号

等 ) 的小型数据集，训练一个简单的分类器 ( 如逻

辑回归或多层感知机 )，就能实现对海量未知序列

的高效功能预测。例如，FANTASIA 这样的工具就

是基于这一原理，实现了对整个蛋白质组的高通量

功能注释。此外，还可以通过收集蛋白质的物理化

学性质数据集，通过微调来获得蛋白质 Tm 预测模

型 [53]、最优催化温度预测模型 [54]、酸碱稳定性预

测模型 [55] 等。在此类任务中，更精巧的学习策略

也能带来性能提升。例如，CLEAN 模型 [56] 便是一

个代表。它并没有对整个蛋白质语言模型进行微调，

而是采用了一种高效的迁移学习方法：首先，使用

预训练好的 ESM-1b 模型 ( 冻结其参数 ) 来提取蛋

白质序列的嵌入向量；然后，通过对比学习来训练

一个映射模块，将该序列向量与对应的酶功能 (EC
号 ) 的文本描述在同一个表示空间中进行对齐。通

过这种方式，CLEAN 学会了精准地将蛋白质序列

与其功能描述关联起来，在酶功能注释任务上表现

出优异的性能。

4.1.2　突变设计

突变设计指预测单个或多个氨基酸突变对蛋白

质功能 ( 如稳定性、活性、结合亲和力 ) 的影响。

PLMs 能够从多场景出发来预测蛋白质的突变功能，

包括单点突变预测和数据驱动的高点位突变预测。

4.1.2.1　单点突变预测

凭借在预训练中学习到的蛋白质序列概率分布

建模能力，PLMs 能够对突变进行似然度排序。其

基本思想是，自然进化倾向于保留功能正常的蛋白

质，因此天然序列的似然度应该较高 [57]。一个导致

功能丧失的突变会产生一个“不自然”的序列，其

似然度也相应较低。因此，通过计算野生型序列和

突变型序列的似然度对数比，就可以直接评估突变

的效应。这种预测事先无需目标蛋白的突变功能数

据，仅依靠蛋白质的序列信息，因此被称作零样本

突变效应预测 [25]。基于这一原理，多款 PLMs 被开

发出来用于预测蛋白质突变效应，包括 ESM-1v 模

型 [25]、Tranception 模型 [38]、SaProt 模型 [58]、ProSST
模型 [59]、VenusREM 模型 [60]、Venus-EEM 模型 [61] 等。

表5  蛋白质语言模型的应用场景

名称 起点 目标 代表模型

功能注释 序列 功能 PLMs嵌入+迁移学习模型

突变设计 序列 功能 Prime、FSFP、SESNet、Venus-EEM、ProSST、
   Tranception、ESM-1v、ProMEP、EVOLVEpro等
酶挖掘 功能 序列 VenusMine、PLMSearch等
从头设计 功能 序列 ESM-3、ProGen、ProGen3、ProDT、EvoDiff、DePLM-2等
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此外，还有专门用于小样本预测的模型 FSFP[62]，

其能够在仅利用几十个数据的情况下显著提升蛋白

质语言模型单点位突变预测的阳性率。哈佛大学医

学院和牛津大学研究人员建立了 ProteinGym 高通

量基准测试平台 [63]，上海交通大学建立了 Venus-
MutHub 低通量基准测试平台 [64]，它们能够从多

个维度衡量蛋白质语言模型的零样本突变预测效

果。其中，VenusMutHub 的系统性评估进一步揭示

了不同模型的能力边界与适用场景。研究发现，模

型的性能表现出强烈的任务依赖性：例如，基于结

构信息的模型在稳定性预测中占优，而依赖进化信

息的模型则在活性预测上表现更佳。同时，该基准

测试也暴露了当前所有 PLMs 的共同短板，即在处

理多点突变时难以捕捉上位效应 (epistatic effects)，
以及在预测选择性等更复杂功能时表现普遍不佳，

这为未来模型的发展指明了需要攻克的方向。

4.1.2.2　数据驱动的高点位突变预测

一般来说，蛋白质工程改造蛋白质达到理想的

性能指标依赖于高点突变。PLMs 能够从单点位或

高点位突变中学习突变序列到功能的映射，并且能

够以多轮迭代的方式提升模型预测的精度，最终完

成大幅度的模型提高。上海交通大学提出了 PRIME
蛋白质语言模型 [53]，其不仅能够以零样本的方式预

测蛋白质单点位突变的性能，还能够通过多轮迭代

的方式提升模型的预测精度，其预测在湿实验中得

到了验证，超过 30% 的推荐突变体在热稳定性、催

化活性或结合亲和力等方面显著提升。EVOLVEpro
模型 [65] 则利用主动学习框架，能够仅利用少量实

验数据指导蛋白质进化。EVOLVEpro 模型将 PLMs
提取的突变序列的嵌入向量与机器学习模型结合，

通过几轮 “设计 - 构建 - 测试 - 学习”的迭代，能够

从极少量的实验数据点中学习序列与功能的关系。

与依赖进化信息的模型不同，METL 框架 [66] 为解

决数据稀缺问题提供了新思路。它创新地在生物物

理模拟数据 ( 而非进化序列 ) 上进行预训练，通过

学习预测数百万突变体的物理属性 ( 如能量、稳定

性 )，为模型注入“物理先验知识”。这使得 METL
在微调时仅需极少量实验数据，就能在小样本和跨

任务中表现出色。实验验证，仅用 64个GFP数据点，

METL 就成功设计出多个具有活性的高阶突变体，

证明了融合物理学知识能有效提升模型在蛋白质工

程中的泛化能力。 
4.1.3　结构预测

尽管 AlphaFold2 在结构预测上取得了巨大成

功，但其严重依赖于多序列比对 (MSA) 的输入，对

于缺乏同源序列的孤儿蛋白 (orphan protein) 效果不

佳。蛋白质语言模型为此提供了新的解决思路。由

于 PLMs 在预训练阶段已经学习了蕴含在海量序列

中的进化和结构规律，它们有潜力直接从单条序列

预测三维结构。代表性工作是 Meta AI 开发的

ESMFold[26]。该模型在大型语言模型 ESM-2 的基础

上，加入了一个结构预测模块 (folding head)，实现

了端到端、无需 MSA 的结构预测。虽然其总体精

度略低于 AlphaFold2，但在没有同源序列的情况下，

ESMFold 的表现尤为出色。更重要的是，通过完全

绕过传统模型中最为耗时的 MSA 搜索环节，ESMFold
的推理速度得到了极大提升。这种显著的效率优

势使其在需要对数百万乃至数十亿序列进行预测的

高通量场景中，如宏基因组结构注释 (metagenomic 
structure annotation)，具有无可替代的独特价值，为

快速、大规模的结构预测以及孤儿蛋白的研究提供

了强大的工具。

随着 AlphaFold3[67] 等新一代扩散模型的出现，

结构预测的精度再创新高，但其巨大的计算开销也

为大规模应用带来了挑战。针对这一问题，近期提

出的 Protenix-Mini 模型 [68] 探索了构建轻量化、高

效率结构预测器的新途径。在其 Protenix-Mini-ESM
变体中，研究者用预训练好的 PLM(ESM2-3B) 的嵌

入向量完全替代了耗时的 MSA 搜索与处理模块，

并通过一种混合训练策略，让模型学会同时从 MSA
或 PLM 嵌入中提取信息。在推理时，可以完全绕

过 MSA，实现快速预测。更重要的是，Protenix-
Mini 还通过精简模型架构 ( 如减少 Transformer 层
数 ) 和优化采样算法 ( 将数百步的扩散采样降至仅

需两步 )，在仅牺牲 1%~5% 精度的前提下，大幅降

低了计算成本。这一系列工作表明 PLMs 不仅是解

决孤儿蛋白预测问题的关键，更是实现“高精度”

与“高效率”平衡、推动结构预测技术走向更广泛

实际应用的重要引擎。

4.1.4　交互式蛋白质问答

近期，研究者们开始将蛋白质语言模型与通

用大语言模型 (LLMs) 相结合，构建了交互式的蛋

白质问答系统，进一步提升了从序列 / 结构中获取

功能信息的能力。这类模型，如 ProteinChat[69] 和

ProteinGPT[70]，允许用户以自然语言对话的方式对

蛋白质进行提问。用户可以上传一个蛋白质的序列

或三维结构，然后直接询问“这个蛋白的催化位点

在哪里？”或“它与哪些药物可能相互作用？”。
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模型内部通过 PLMs 将蛋白质信息编码为向量，再

将其与用户的问题一同输入到一个大型语言模型中

进行理解和回答。这种交互式范式极大地降低了生

物信息分析的门槛，为研究人员提供了一个直观探

索蛋白质功能的新途径。

4.2　从功能到序列

从功能到序列是从序列到功能的对偶任务，即

根据期望的功能，推出对应的氨基酸序列。以下

介绍两种从功能到序列的研究方法：酶挖掘和从头

设计。

4.2.1　酶挖掘

酶挖掘的目标是从天然或宏基因组序列数据库

中，发现具有特定催化活性的新酶序列。PLMs 为
两个蛋白质序列计算出的嵌入向量的相似度在一定

程度上能够反映两个蛋白质的功能相似性。例如，

上海交通大学洪亮教授团队开发的 VenusMine 模

型 [71] 将 PLMs 与三维结构分析相结合。首先利用

PLMs 提取的高维特征对海量序列进行聚类和初步

筛选，然后评估与已知具备 PET 水解功能的酶结构

相似的候选蛋白。这种优先考虑结构相似性而非序

列同源性的策略，成功地从数千万个候选蛋白中发

现了多种全新的、催化效率和热稳定性均优于已知

酶的 PET 水解酶，证明了蛋白质语言模型在酶挖掘

方面的巨大潜力。此外，PLMs 同样可以通过微调

直接估计两条蛋白质的结构相似性。PLMSearch[72]

是一种仅仅依赖序列输入的快速同源搜索方法，其

利用预训练语言模型生成的深度表征来训练一个能

够预测蛋白质间结构相似度 (TM-score) 的模型，

使得 PLMSearch 能够捕捉到传统序列比对方法

BLAST 无法识别的远缘同源关系，在保持极高搜

索速度的同时，其灵敏度甚至超越了基于三维结构

的搜索方法，尤其擅长发现序列差异大但结构和功

能相似的新酶。

在此基础上，近期由西湖大学原发杰教授团队

开发的 ProTrek 模型 [73] 在多模态蛋白质搜索方面取

得了进一步的突破。ProTrek 是一个创新的三模态

语言模型，它通过对比学习将蛋白质的序列、三维

结构以及由自然语言描述的功能信息统一到一个联

合嵌入空间中。这种设计使得 ProTrek 不仅能进行

传统的序列或结构比对，更开创性地实现了基于文

本描述的蛋白质搜索。研究者可以直接用自然语言

( 例如“能够从 DNA 中移除尿嘧啶的糖基化酶”)
来查询庞大的蛋白质数据库，精准地找到具备特定

功能的候选酶，甚至能够发现那些序列和结构上无

显著同源性，但功能上趋同进化的蛋白质。 
4.2.2　从头设计

从头设计 (de novo design) 旨在创造出自然界

中不存在的、具有全新或优化功能的蛋白质序列。 
自回归蛋白质语言模型是实现从头设计的重要工

具。ProGen 模型 [37] 通过在包含功能标签的 2.8 亿

条序列上进行训练，学会了根据指定的标签生成相

应的序列。其实验验证工作表明 ProGen 生成的多

种全新溶菌酶的序列与任何已知天然蛋白的同一性

低至 31.4%，但在体外实验中表现出与天然溶菌酶

相当的催化活性，表明了 PLMs 具备了生成新蛋白

的能力。扩散蛋白质模型同样能够完成从头设计任

务，例如 EvoDiff[50] 等模型能够在无结构信息的条

件下，仅从序列出发生成多样化且结构合理的蛋白

质。而多模态扩散模型如 DPLM-2[49] 则能同时生成

序列和结构，确保了设计出的序列能够折叠成稳定

的三维形态。   
一些最新的研究前沿甚至开始探索从自然语言

描述直接设计蛋白质。例如，ProteinDT 模型 [74] 利

用蛋白质的文本描述来指导蛋白质设计。首先，通

过对比学习模型 ProteinCLAP 对齐文本和蛋白质的

表示；其次，由一个促进器从文本生成蛋白质表示；

最后，一个解码器根据此表示生成蛋白质序列。实

验证明，ProteinDT 在文本引导的蛋白质生成、零

样本蛋白质编辑和属性预测等多项任务中表现出

色，验证了融合文本信息在蛋白质设计中的有效性。

Pinal 模型 [75] 则提出了一种两阶段方法：首先将用

户的自然语言指令 ( 如“设计一个能结合 X 靶点的

蛋白”) 翻译成一个抽象的蛋白质结构表示，然后

再利用逆折叠模型生成符合该结构和语言描述的序

列。这种方法通过在更小的结构空间中进行搜索，

有效地约束了广阔的序列空间，比直接进行端到端

的文本到序列生成更为高效和可靠。

5　可解释性：从统计规律到物理原理

尽管蛋白质语言模型在各项任务中取得了显著

成功，但其如同“黑箱”般的内部工作机制限制了

我们对其决策过程的深入理解与信任。因此，可解

释性研究旨在揭示模型“知其然”背后的“所以然”。

本节将遵循“表征特征发现 - 决策机制解析 - 物理

基础验证”的递进逻辑，深入探讨 PLMs 是仅仅记

忆了序列中的统计规律，还是在某种程度上学习到

了驱动蛋白质功能的物理化学原理，从而在 AI 模
型与生物物理第一性原理之间建立桥梁。
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5.1　表征特征发现：模型嵌入向量中的生物学信息

可解释性研究的首要任务是打开“黑箱”，理

解其高维表示中编码了何种生物学信息。研究发现，

直接分析单个神经元难以与特定生物学概念对应。

因此，研究者致力于将复杂的内部表示分解为人类

可理解的特征。近期，以稀疏自编码器 (SAE) 为代

表的字典学习方法取得了显著进展。例如，InterPLM 
框架 [76] 在 ESM-2 模型上应用 SAE，成功将其内部

表征分解为数千个与生物学概念 ( 如结合位点、结

构基序 ) 高度对齐的、更稀疏且更可解释的“特征”。

这类研究证实，PLMs 的内部表示确实捕捉到了丰

富的、有意义的生物学概念，这为后续的决策机制

分析奠定了基础。

5.2　决策机制解析：统计记忆还是物理模拟？

在确认模型学到了生物学特征之后，下一个关

键问题是：PLMs 在进行预测时，究竟是像物理引

擎一样进行模拟，还是更像一个高效的“查询系统”，

仅依赖于对进化统计规律的记忆与调用？

多项研究证据倾向于后者。一项针对 ESM-2
的研究 [77] 发现，模型主要依赖局部序列基序进行

接触预测，并且其内部的共进化信号与传统统计模

型高度相似，这表明其行为更接近于查找统计规律。

对模型“偏好”的进一步研究也支持了这一假说。

Gordon 等 [78] 发现，PLMs 在零样本突变预测任务

上的表现，与其对野生型序列的“偏好程度”( 通
过似然度量化 ) 密切相关，而这种偏好主要源于训

练集中同源序列的存在与相似度。这些证据共同表

明，当前 PLMs 的能力主要源于其对海量数据中进

化统计规律的高效记忆和调用，而非对物理折叠过

程的模拟。

5.3　物理基础验证：连接统计规律与物理原理

然而，将 PLMs 的能力完全归结于统计记忆可

能忽略了其学习到的规律背后所蕴含的物理意义。

Frellsen 等 [79] 的工作为模型的统计预测能力与物理

现实之间建立了坚实的桥梁。他们从热力学第一性

原理出发，严格推导了逆折叠模型计算的似然度对

数比与蛋白质稳定性自由能变 (ΔΔG) 之间的数学关

系。该研究阐明，当前普遍使用的零样本预测方法，

在理论上是物理模型的一个有效近似，这解释了其

预测结果为何与实验有很高的相关性。这项工作巧

妙地证明了 PLMs 学习到的进化统计规律，在特定

任务 ( 如稳定性预测 ) 上可以成为复杂生物物理原

理的有效代理 (proxy)。它不仅为 AI 模型的黑箱决

策提供了物理解释，也为基于物理理解改进模型 ( 如

通过引入结构系综 ) 指明了方向。

6　模型的发展

仅基于序列的语言模型没有考虑蛋白质赖以发

挥功能的三维结构。为了让模型学习到更符合生物

规律的知识，研究者尝试向蛋白质语言模型中引入

多模态信息，其中最关键的就是结构信息，可以使

用蛋白质的二级结构、三级结构或者是序列化的结

构来增强蛋白质语言模型的性能。同样地，功能信

息、MSA 信息等也可以被用于增强蛋白质语言模

型。此外，自然语言作为一种人类使用的对蛋白质

功能的理解符号，也可以被用来增强蛋白质语言模

型的性能，尤其是在引入蛋白质的功能约束，例如

ESM-3 模型 [17] 就采用了此方案。表 6 列举了目前

通过引入多模态信息增强的蛋白质语言模型。多模

态信息的融合通常采用以下几种策略：(1) 输入层

融合：将结构或功能信息的嵌入向量直接与序列嵌

入拼接或求和，或者通过扩增词表来表示。例如，

SaProt 模型 [60] 利用 Foldseek 工具将蛋白质三维结

构离散化为结构字母表，与氨基酸序列拼接形成“结

构感知序列”作为模型输入；ProSST 模型 [61] 通过

VQ-VAE 将局部结构量化为离散符号，与序列符号

交替编码。(2) 中间层交互：利用交叉注意力机制

或提示学习在模型的 Transformer 层中引入外部模

态信息。例如，LM-Design 模型 [87] 通过交叉注意

力机制使语言模型在生成序列时动态关注结构编码

器提供的空间信息；PromptProtein 模型 [83] 将结构

和属性信息编码为软提示向量，插入到 Transformer
中间层引导模型学习；ESM-IF 模型 [45] 和 ProteinMPNN
模型 [48] 均采用编码器 - 解码器架构，在解码器的每

一层通过交叉注意力接收结构编码器的嵌入表示。

(3) 输出层对齐：通过对比学习等目标函数，在共

享的潜在空间中对齐序列与结构 / 功能的表征。例

如，OntoProtein 模型 [84] 利用对比学习将蛋白质序

列表征与基因本体知识图谱嵌入对齐，使表征隐式

编码功能语义；ProTrek 模型 [75] 通过三模态对比学

习，将序列、结构和自然语言功能描述统一到同一

嵌入空间，实现跨模态检索。

7　挑战与展望

尽管蛋白质语言模型已经取得了较大的发展，

但其仍面临着技术挑战，本节对涌现问题和数据问

题对蛋白质语言模型的挑战做了分析，并且展望了

蛋白质语言模型的发展。
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7.1　涌现问题

在自然语言处理领域，扩展定律 [5] 与涌现现

象 [89] 是驱动大型语言模型参数规模持续增长的重

要原因。扩展定律揭示了模型性能与模型参数量、

训练数据量及计算资源之间存在着可预测的幂律关

系。而“涌现”则指当模型规模突破某一临界点后，

会表现出小型模型所不具备的、解决复杂任务的全

新能力。这两种现象表明模型越大，能力越强，推

动了学界和业界对更大规模模型的探索。

然而，蛋白质语言模型的扩展定律与涌现现象

并没有明显的证据。已有研究，如 Cheng 等 [8] 的工

作确实初步证实了 PLMs 中存在扩展定律：随着模

型参数和计算量的增加，预训练任务的损失函数值

显著下降。尽管如此，预训练损失的降低并未稳定

地转化为下游任务性能的提升。研究表明，PLMs
的性能与参数量之间并非简单的正相关关系。例如，

Chen 等 [7] 在评估 xTrimoPGLM 时发现，仅不到一

半占比的下游任务性能随模型增大而改善，甚至有

部分的任务表现出性能随规模增大反而下降的逆缩

放现象。同样，Hesslow 等 [6] 在 RITA 模型的研究

中也未观察到酶功能及突变功能预测任务存在“涌

现”，其性能增长是渐进式的。Lin 等 [26] 对 ESM-2
模型的评估也得出了类似的结论，即模型性能随参

数增加的提升幅度缓慢。

综上所述，当前研究尚未在蛋白质语言模型中

发现明显的涌现现象，因此“模型越大越好”的假

设在蛋白质领域尚未得到充分验证。蛋白质语言模

型暂未发现涌现现象的原因可能是蛋白质序列与自

然语言文本具有本质的差别，与 NLP 中常出现涌

现的离散型、认知型任务不同，蛋白质功能预测多

为回归任务，旨在预测连续的生物物理值。其评价

指标 ( 如皮尔逊相关系数、RMSE) 天然地反映了渐

进式的性能提升，这是一个平滑的量变过程，而非

“从无到有”的突变，因此难以观测到涌现现象。

蛋白质序列缺乏明确的词汇单元，其功能又由三维

空间结构决定，导致序列中存在大量复杂的长程依

赖关系。加之生物学下游任务的标记数据往往非常

稀疏，有限的标记数据量为模型性能设定了“天花

板”，当模型规模大到足以完全拟合这些数据时，

继续增大参数量将无法带来收益；且实验数据本身

可能包含系统性误差和固有噪声，过度强大的模型

反而容易过拟合这些噪声，导致泛化能力下降。这

些因素共同导致了在数据受限的情况下，单纯扩大

模型规模可能难以带来预期收益，甚至中小规模的

模型表现可能更优 [90]。

7.2　数据问题

自然语言和蛋白质语言模型的研究都表明，模

型扩展必须伴随着高质量数据的同步增长。虽然近

年来测序技术的发展为蛋白质语言模型提供了大量

潜在训练数据，但与自然语言动辄数十万亿的数据

量相比，蛋白质语言模型所能使用的高质量序列仍

有限。更严重的问题在于，不同数据库对蛋白质序

列的定义标准尚未统一。例如，RefSeq 数据库 [91]

根据 RNA 确定蛋白质序列，而其他数据库，例如

Ensembl 数据库 [92]，可能依据 DNA 或实验数据进

行识别。在 UniProt 数据库 [22, 28] 中，真正经过实验

验证的蛋白质序列仅有约百万条 [33]，其余数亿条多

源于宏基因组拼接或同源比对，缺乏足够的功能验

证支持。这种数据规模不足与质量欠佳的双重制约，

显著阻碍了蛋白质语言模型的发展。

7.3　极端环境数据问题

极端环境数据对于提升模型泛化能力至关重

要。目前用于训练蛋白质语言模型的数据主要来源

于常规环境的生物体系，导致模型在应对极端环境

蛋白质时可能会存在偏差。极端环境 ( 高温、高压、

强酸、强碱 ) 中的蛋白质序列在氨基酸组成、结构

折叠模式方面与常规环境的蛋白质不同，因此构建

具备环境多样性的训练数据是提升模型性能一个重

要方法。应用极端环境的数据，能够提升模型在工

业生产环境下的能力，设计出更符合极端工业生产

环境的蛋白质。

在高温环境中，如海底热泉生态系统 ( 温度可

表6  引入外部知识增强的蛋白质语言模型

模型 额外引入的模态 应用场景

ProteinBERT[80]  结构、功能 序列嵌入

ProTrek[75] 序列、结构、功能 序列嵌入

PromptProtein[81] 结构、属性 序列嵌入

OntoProtein[82] 结构 序列嵌入

Prime[53] 温度 突变设计

PeTriBERT[83] 结构 序列嵌入

MIF-ST[84] 结构 序列嵌入

ProteinMPNN[46] 结构 逆折叠

ESM-IF[43] 结构 逆折叠

LM-Design[85] 结构 生成

SaProt[58] 结构 序列嵌入

ProSST[59] 结构 突变设计

AlphaMissense[86] 结构、MSA 突变设计

PoET[87] 结构、MSA 序列嵌入

ProMEP[88] 结构 突变设计
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达 300 °C 以上 )，嗜热菌体内的蛋白质表现出独特

的结构稳定性。研究表明，这类嗜热蛋白通常具有

独特的结构性质和氨基酸组成模式，例如通过谷氨

酸替代天冬氨酸，增强静电相互作用稳定性 [93, 94]。

然而，相关序列数据在公共数据库 ( 如 UniProt、
BFD) 中的覆盖率极低，使得蛋白质语言模型难以

充分学习热稳定性特征。

在高压生态系统中，如马里亚纳海沟及其深

渊带 ( 可达 1 100 个大气压 )，深海嗜压生物的蛋

白质表现出与常压生物显著不同的序列分布与动力

学特征。研究表明，这些蛋白质往往通过减少内部

空腔体积、强化范德华相互作用、优化极性残基分

布来缓解压缩效应 [95-98]。此类数据对模型学习体积

依赖性、稳定性与压强敏感残基替换模式具有重要

价值，但目前仅占公开序列数据库的极少部分，可

能会导致模型在耐高压的场景下的生成与预测性能

不足。上海交通大学肖湘教授牵头发起的“MEER 
计划”[99]，依托“奋斗者”号载人潜水器开展深海

取样与生态研究，系统采集了沉积物、水体、宏生

物与微生物样本，在 6 000~11 000 米水深区域获得

超过 2 000 份样本，构建多样性丰富深渊微生物数

据库 [100]，对模型学习“高压适应”特征极具补充

意义。

在碱性环境中，如青海湖 (pH 9~11)，嗜碱性

生物蛋白质展现出显著的电荷调控特征。例如，研

究发现青海湖裸鲤 (Gymnocypris przewalskii) 在高盐

碱环境中上调与离子稳态、折叠伴侣及抗氧化相关

的基因表达，其蛋白质序列普遍减少赖氨酸与精氨

酸、增加天冬氨酸与谷氨酸残基，从而调节整体电

荷分布 [101-103]。这些序列对模型捕捉 pH 依赖性结构

变化极为关键，但因样本稀缺而在预训练语料中可

能会导致利用不足。

在酸性环境中，如酸性矿区或工业酸性废水

(pH 1~2)，嗜酸菌的蛋白质需要抵御质子化与金属

离子胁迫。研究发现，这类蛋白质表面富集酸性残

基以形成稳定电荷屏障，同时增强疏水核心和金属

结合能力，这种序列适应还伴随抗氧化酶的扩增与

蛋白质自修复机制 [104, 105]。这些环境相关序列反映

了多层级的适应模式，但目前尚未系统地纳入模型

训练语料中。

从数据多样性角度看，极端环境蛋白质不仅扩

展了序列空间的覆盖范围，也揭示了氨基酸替换模

式与结构稳定性之间的多样耦合机制。将此类序列

系统性纳入蛋白质语言模型的训练，可有效缓解模

型在常规环境下的过拟合问题，并提升模型在蛋白

质稳定性预测、功能注释与定向设计中的可靠性。

未来研究应重点构建覆盖温度、压强、pH 与盐度

梯度的多源蛋白质数据库，结合环境元数据实现条

件化语言建模，以实现对真实生物环境更具泛化性

的蛋白质设计。

7.4　核心科学问题的再思考：超越序列统计

尽管 PLMs 在模仿自然进化产物方面表现出

色，但要真正实现“按需设计”的工程目标，领域

内仍有几个深层次的科学问题亟待突破。这不仅是

技术层面的优化，更是对研究范式的重新审视。

首先，如何从“统计模拟”迈向“物理理解”？

当前 PLMs 本质上是高效的统计相关性学习器，它

们通过记忆海量进化数据中的共现模式来“猜测”

规律，而非通过理解物理首要原理 ( 如热力学稳定

性、动力学路径 ) 来进行推理。这种差异导致模型

在面对非自然序列 (de novo design) 时容易产生“幻

觉”—— 生成的蛋白质可能在序列上看似合理，但

无法在物理世界中折叠或行使功能。未来的研究

需要探索如何将可微的生物物理约束 (differentiable 
biophysics) 显式地嵌入到语言模型的损失函数中，

使模型不仅学习“像不像天然蛋白”，更能学习“能

不能稳定存在”。其次，数据困境的破局之道在于“主

动”而非“被动”。盲目追求模型参数和数据量的

扩展 (scaling laws) 在生物学领域可能面临边际效应

递减的风险，因为高质量的湿实验标签数据永远无

法像互联网文本那样廉价获取。因此，未来的范式

应从“被动的大数据喂养”转向“主动的智能探索”。

这就要求赋予 PLMs“好奇心”—— 即利用主动学

习 (active learning) 和贝叶斯优化框架，让模型能够

识别自身知识的边界，主动筛选那些“最能证伪模

型假设”的高价值序列进行湿实验验证。这种“干

湿闭环”(dry-wet loop) 的迭代模式，将是突破数据

瓶颈、实现小样本学习的关键。最后，探索蛋白质

空间的“暗物质”。现有的训练数据主要覆盖了自

然界中经过亿万年进化筛选的“成功者”，而忽略

了无数在进化中被淘汰的“失败者”( 负样本 )，以

及尚未被自然界探索的广阔序列空间。这种“幸存

者偏差”限制了模型对蛋白质适应性景观 (fitness 
landscape) 全貌的理解。未来的创新方向之一是利

用物理模拟生成大量的负样本数据，或者系统性地

收集突变实验中的失效数据，教会模型“什么是错

误的”，这对于提升模型在从头设计任务中的鲁棒

性可能比学习“什么是正确的”更为重要。
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8　总结

蛋白质语言模型是人工智能与生命科学深度交

叉的前沿领域，在理解蛋白质“序列 - 功能”的关

系中发挥了重要作用。本综述总结了蛋白质语言模

型的模型架构、应用场景和发展趋势，并对其当前

面临的挑战与未来发展趋势进行了展望。

在过去数年间，该领域见证了显著的进展。模

型架构已从早期的判别式模型演进至功能多样的生

成式模型，其中包括旨在根据结构或功能约束生成

序列的自回归与逆折叠模型，以及近期涌现的、在

生成质量和灵活性上更具优势的扩散模型。这一发

展轨迹清晰地反映出该领域核心目标的转变：从最

初对现有蛋白质的理解，迈向了对全新功能蛋白的

挖掘与设计。

然而蛋白质语言模型仍面临若干瓶颈。首先，

数据基础仍需夯实，要求进一步挖掘现有生物数据

库，并扩充高质量、多样化的数据资源。其次，多

模态信息的融合是提升模型能力的关键，通过有效

整合结构、功能及进化信息，有望显著增强模型的

表征精度与生成性能。

综上所述，尽管蛋白质语言模型已在多个方向

取得令人鼓舞的成果，但其领域的爆炸性突破尚未

到来。如何持续提升模型性能、拓展应用场景，并

揭示其背后潜在的生物学规律，仍是 AI 辅助蛋白

质工程领域的核心议题。推进这一进程不仅将为合

成生物学的发展注入新的动力，更将为生命健康及

相关产业的创新与突破提供强有力的计算引擎。
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