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摘　要：循证医学决策面临信息过载与知识碎片化挑战。生物医学知识图谱作为新兴技术，展现了解决这

些问题的潜力。本文系统性地分析知识图谱在循证医学中的应用现状与技术路径，揭示其如何改变临床证

据的获取、整合与应用模式。知识图谱通过语义网络结构实现医学知识系统化表示与智能推理，为个性化

治疗、罕见病诊断等提供决策支持。尽管面临证据质量评估、动态更新与可解释性等挑战，但知识图谱正

推动循证医学从“基于文献”向“基于知识”转型，在证据整合与人机协同决策方面展现广阔前景。
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Biomedical knowledge graphs supporting evidence-based 
medicine decision-making
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Abstract: Evidence-based medicine decision-making faces challenges of information overload and knowledge 
fragmentation. As an emerging technology, biomedical knowledge graphs show the potential to address these issues. 
This paper systematically analyzes the current application status and technical paths of knowledge graphs in 
evidence-based medicine, and reveals how they transform the acquisition, integration, and application models of 
clinical evidence. Knowledge graphs achieve systematic representation and intelligent reasoning of medical 
knowledge through semantic network structures, providing decision-making support for personalized treatment, rare 
disease diagnosis, etc. Although they face challenges such as evidence quality assessment, dynamic updating, and 
interpretability, knowledge graphs are driving the transformation of evidence-based medicine from "literature-
based" to "knowledge-based", and show broad prospects in evidence integration and human-machine collaborative 
decision-making.
Key words: biomedical knowledge graph; evidence-based medicine; clinical decision support; artificial intelligence; 
knowledge representation

1　引言

1.1　问题提出

在现代医疗体系中，循证医学已成为指导临床

决策的金标准，要求医疗实践建立在最佳可获得的

科学证据基础上。然而，随着医学研究的爆发式增

长，医疗专业人员正面临前所未有的信息过载挑战。

全球医学文献数量巨大，临床医生难以跟上学科发

展速度 [1]。与此同时，传统文献检索方法存在诸多

局限性，比如：知识更新存在延迟，大约平均需要

17 年才能将研究发现转化为临床实践；医学知识呈

现高度碎片化状态，分散在各种专业期刊、临床指

南和病历系统中 ；证据质量参差不齐，医生难以在

有限时间内有效评估和整合 [2]。

在复杂患者案例面前，尤其是多病共存、罕见

病或个体化治疗决策场景下，传统计算机辅助决策

系统往往基于简单规则或统计模型，缺乏对医学知

识丰富语义关系的深度理解，无法满足临床决策的

复杂性和动态需求 [3, 4]。如何有效整合、表示和利

用海量医学知识以支持循证医学决策，成为医疗信

息学领域亟待解决的问题。

1.2　技术机遇

知识图谱作为一种新兴的知识表示与推理技

术，近年来在生物医学领域的应用呈现爆发式增长。

生物医学知识图谱通过图结构将医学概念 ( 如疾病、

药物、基因等 ) 作为节点，将它们之间的关系 ( 如
治疗、禁忌、因果等 ) 作为边，构建成一个复杂的

语义网络，为医学知识的系统化表示与推理提供了

框架 [5]。目前，已有多个大型生物医学知识资源被

广泛应用，如统一医学语言系统 (Unified Medical 
Language System, UMLS) 整合了约 200 万个医学概

念和 500 多万个医学词汇；语义医学数据库 (Semantic 
MEDLINE Database, SemMedDB) 从 PubMed 文献中

提取了超过 5 760 万个谓词关系 [6] ；SNOMED CT
提供了超过 35 万个医学概念的标准化术语体系 [7]。

图 1 展示了 SNOMED CT 术语模型的逻辑结构，该

模型通过分层组织医学概念，支持多源异构医学信

息的语义统一。该结构为临床术语的标准化、互操

作提供了基础，有助于支撑后续的本体构建和知识

图谱结构化设计 [8]。

表 1 列举了 SNOMED CT 中定义的 19 个顶级

概念，包括临床发现、操作、标本等。这些顶层语

义类别为构建结构化医学知识图谱提供了重要的语

义基础与术语支持。

COVID-19 大流行期间，知识图谱技术展现出

加速证据合成的独特优势。例如，研究人员基于知

识图谱构建了 COVID-19 知识整合平台，在短时间

内整合了数十万篇相关文献和临床数据，有效支持

了药物重定位、疫苗研发和临床诊疗决策 [9]。该案

例充分展示了知识图谱在整合异构医学数据、加速
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图1  SNOMED CT的逻辑模型图解[8]

证据合成和辅助临床决策方面的巨大潜力，为循证

医学实践提供了新的技术途径。

1.3　研究进展与综述价值

本综述旨在系统梳理知识图谱与循证医学的交

叉研究领域。我们在 PubMed、IEEE Xplore 等数据

库中检索了相关文献，并对其进行分析。根据“证据 -
知识 - 决策”转化框架，揭示了从原始医学文献到

结构化知识，再到可操作临床决策的系统化路径 [10]。

目前，相关的医学知识图谱构建与应用系统已

被开发出来。例如，通过整合大量患者电子健康记

录和临床指南，构建了包含数百万三元组的医学知

识网络，并在多家三甲医院进行临床试点，在多病

种共患管理和罕见病诊断方面取得了积极成果 [1, 4]。

本综述在系统总结领域技术发展的同时，也分析了

现存挑战并提出可能的解决路径。

2　基础理论与技术路径

2.1　基础概念体系

2.1.1　循证医学决策的PICO框架

循证医学 (Evidence-based medicine, EBM) 强调

将最佳研究证据、临床专业知识和患者价值观有机

整合，以指导临床决策 [11]。PICO 框架如图 2 所示，

是循证医学决策的黄金标准，由四个要素组成：患

者群体 (Population)、干预措施 (Intervention)、对照

措施 (Comparison) 和结局指标 (Outcome)。PICO 框

架规范了临床问题的形成过程，为系统化文献检索

和证据评价奠定了基础 [11]。

然而，PICO 框架在应用层面也面临挑战，比如：

医学文献中 PICO 元素往往隐含在文本中而非显式

标注；临床决策中涉及的多维因素难以完全纳入框

架；临床研究与实际患者情况存在差异，限制了证

据的外部有效度 [12]。而知识图谱技术可以通过对

PICO 元素的自动化识别、语义关联分析和情境感

知推理，为循证医学决策提供更精准、全面的支持。

2.1.2　生物医学知识图谱的构成要素

生物医学知识图谱是一种特殊的语义网络结

构，通过节点和边表示医学领域的实体及其关系 [13]。

节点类型主要包括疾病节点、症状节点、药物节点、

基因 / 蛋白质节点、实验室检查节点、解剖结构节点、

证据节点和患者特征节点 [4, 14]。

这些节点通过丰富的关系类型相互连接，主要

包括治疗关系 ( 如“药物 A- 治疗 - 疾病 B”)、禁
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忌关系、因果关系、关联关系、分类关系、时序关系、

解剖关系和证据支持关系 [7]。这种节点 - 关系结构

使生物医学知识图谱不仅能表示医学事实，还能捕

捉复杂的医学知识语义和推理路径，为循证医学决

策提供丰富的知识基础。图 3 所示的 BioCypher 是
一个面向生物医学的知识图谱构建框架，通过 ETL 
( 抽取 (Extract)、转换 (Transform)、加载 (Load)) 过
程接入异构数据源并利用本体进行概念映射，实现

了灵活的数据融合和图谱生成。该框架支持从异构

源数据中提取结构化信息，并基于本体进行实体标

准化与语义映射，最终构建统一的图谱结构，用于

支持下游的知识整合与推理任务 [15]。

不同于传统关系数据库，知识图谱的灵活结构

允许动态添加新的节点类型和关系类型，使其能够

适应医学知识的不断演变和扩展。这种灵活性对于

表1  SNOMED CT的19个顶级概念[8]

序号 顶级概念名称 含义

1 Clinical finding (临床发现) 表示一个临床观察的结果、评价或判断，包括正常的和异常的临床状态(如
      |哮喘|、|头痛|、|正常呼吸音|)。|临床发现|层级包括用来表示诊断的概念

2 Procedure (操作) 表示在提供健康保健方面开展的活动。这不仅包括侵入性操作，也包括药物、

      影像、教育、治疗和管理方案(如|阑尾切除术|、|理疗|、|皮下注射|)
3 Situation with explicit context (具有明确 表示特定的有临床含义的概念定义的一部分。这些包括一个条件的存在或不

     语境的情况)     存在，是否是目前的临床发现，过去是否有，或是否有除了本人还涉及其

      他人的记录(如|内窥镜安装|、|心肌梗死既往史|、|青光眼家族史|)
4 Observable entity (观察对象) 表示可能产生答案或结果的一个问题或评价(如|收缩压|、|虹膜颜色|、|性别|)
5 Body structure (身体结构) 表示正常和异常解剖结构(如|二尖瓣结构|、|腺肉瘤|)
6 Organism (有机体) 表示对人和动物医学有意义的生物(如|化脓性链球菌|、|比格犬|、|特克松牛|)
7 Substance (物质) 表示一般物质，医药/生物制品、体内物质的化学成分、营养物质和诊断物质 
      (如甲烷| |、|胰岛素|、|白蛋白|)
8 Pharmaceutical/biologic product (药物/生 表示药品(如|阿莫西林250 mg胶囊|、|对乙酰氨基酚+可待因片|)
     物产品) 
9 Specimen (标本) 表示获得的用于检查或分析的实体(通常来自病人)(如|尿液标本|、|前列腺穿刺

      活检标本|)
10 Special concept (特殊概念) 表示不属于术语概念模型的形式逻辑中的部分，但可以在特殊案例中使用(如|
      导航概念|、|替代药物中毒|)
11 Physical object (物理对象) 表示自然和人造对象(如|腔静脉滤器|、|植入装置|、|汽车|)
12 Physical force (物理力) 表示损伤机制中起作用的物理因素(如|摩擦|、辐射|、|交流电|)
13 Event (事件) 表示除去操作和干预措施的事件(如|洪水|、地震|)
14 Environments and geographical locations 表示环境类型，包括地点名称，比如国家、地区(如| ICU |、|学术医疗中心|、
     (环境和地理定位)     |丹麦|)
15 Social context (社会环境) 表示对健康保健有重要意义的社会条件和环境(如|职业|、|精神或宗教信仰|)
16 Staging and scales (分期与分度) 表示评估量表及肿瘤分期系统(如|格拉斯哥昏迷量表|、| FIGO妇科恶性肿瘤分

      期系统|)
17 Qualifier value (限定值) 表示某种SNOMED CT的属性值，这些值是不是其他顶级概念的亚型(如|左|、
      |结果异常|、|严重|)
18 Record artefact (人为记录) 表示为他人提供有关记录事件或事态信息而创建的内容(如|病人记录|、|记
      录项目|、|家族史部分|)
19 SNOMED CT model component  包含了支持SNOMED CT发布的技术元数据

     (SNOMED CT模型组建) 

图2  PICO框架
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捕捉医学领域快速变化的新发现至关重要。

生物医学知识图谱的构建在实践中通常包括以

下关键步骤。(1) 数据源选择与整合：确定包括电

子健康记录 (Electronic health record, EHR)、公共数

据库 ( 如 DrugBank、DisGeNET、PubMed)、临床

指南和注册临床试验等多源数据；(2) 数据清洗与

标准化：对异构数据进行去噪和规范化处理，例如

通过 UMLS 映射不同术语的同义关系，实现语义一

致性；(3) 实体识别与关系抽取：利用自然语言处

理工具 ( 如 MetaMap、SciSpacy) 从文本中识别疾病、

药物、基因等实体及其语义关系；(4) 本体对齐与

三元组生成：将抽取结果与标准本体 ( 如 SNOMED 
CT、Gene Ontology)对齐，生成规范化三元组h,r,t (头
实体 Head entity)，关系 (Relation)，目标实体 (Target))；
(5) 图数据库构建与存储：采用 Neo4j、Amazon 

Neptune 等图数据库存储知识三元组，实现高效图

查询；(6) 知识验证与更新：引入专家评审与自动

化规则校验，对三元组置信度分级，并支持增量更

新机制 [6, 13, 14]。 
2.2　关键技术路径

2.2.1　知识获取技术

生物医学知识图谱的构建依赖于从多源异构数

据中获取医学知识，主要包括结构化数据整合和非

结构化文本挖掘两大技术路径 [16]。结构化数据来源

包括临床试验数据库 ( 如 ClinicalTrials.gov)、公共

生物医学数据库 ( 如 DrugBank、DisGeNET 等 ) 和
电子健康记录中的结构化数据 [17]。

结构化数据整合面临的主要挑战是处理数据源

之间的异质性。有研究者开发了基于本体映射的数

据集成方法，如通过 UMLS、SNOMED CT 等标准本

图3  BioCypher框架[15]
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体作为中介，实现异构数据源之间的语义互通 [7, 10]。

在非结构化文本挖掘方面，自然语言处理

(Natural language processing, NLP) 技术是从临床指

南、医学文献和病历记录等文本数据中提取知识的

核心工具。NLP 技术链通常包括命名实体识别、关

系抽取、共指消解和时序信息提取。

针对 PICO 框架的自动文本处理技术，能从医

学文献中识别患者特征、干预措施、对比组和结果

指标，支持循证医学决策自动化 [11]。

通过基于多层次注意力机制的医学文本知识提

取框架，引入医学本体知识，可以有效提高实体关

系抽取的准确率。例如，Sousa 等 [18] 提出的 K-RET
系统通过整合多源本体知识提高了关系抽取的准确

性和覆盖面。

2.2.2　知识表示方法

知识表示是将获取的医学知识转化为计算机可

处理的形式，是生物医学知识图谱发挥决策支持作

用的关键环节，而知识图谱作为知识表示的一种体

现方式，将概念与关系以节点 - 边的形式进行直观

体现，实现了异构医学知识的统一表示和语义互联。

与传统基于符号的规则或纯向量嵌入不同，知

识图谱兼具可解释性和灵活性，可支持跨来源数据

的语义整合和复杂关系推理，从而补充了其他表示

方法的不足 [14]。本体构建作为知识图谱的语义基础，

通过形式化定义领域内的核心概念、关系和约束，

为知识图谱提供统一的语义框架。这一方法在医疗、

生物等领域已得到广泛应用，如 SNOMED CT、

Gene Ontology 等，本体被广泛应用于知识图谱的

基础构建中 [7]。

图 4 展示了 SNOMED CT 中一个医学概念的

详细描述格式，包括该概念的唯一标识符、全称、

术语类型以及与其他概念之间的关系信息。这种结

构化的描述方式为构建具有语义清晰性的医学本体

奠定了坚实基础。

在生物医学领域，KG-BERT (Knowledge Graph, 
KG) 等模型将预训练语言模型与知识图谱相结合，

实现了医学概念的上下文感知表示 [20]。通过在临床

文档和医学知识图谱上联合训练模型，能够在药物 -
疾病关系预测任务上取得显著提升，因此也可以看

出通过引入知识图谱可以有效提升传统医学预测的

准确率。

此外，多模态知识表示也日益受到重视，通过

整合文本、图像和分子结构等多源信息，为我们全

面理解复杂医学概念提供了更好的思路。这些多模

态的知识表示方法也为生物医学知识图谱提供了强

大的语义表达能力。

2.2.3　决策支持应用

基于生物医学知识图谱的决策支持应用正在为

循证医学变革提供实践。患者个性化治疗推荐系统

是典型的应用，通过整合患者特征、疾病机制和治

疗证据，能为医生提供定制化治疗方案。例如，

IBM Watson for Oncology (https://www.cancertaipei.
tw/watson 癌症治疗辅助系统 /?lang=zh-hans) 基于超

过 1 500 万页医学资料构建的知识图谱，为癌症患

图4  SNOMED CT单个概念的描述示例[19]
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者提供个性化治疗建议，考虑患者的基因突变、共

病情况和用药史等因素。

图 5 为“证据 - 知识 - 决策”转化框架，从原

始医学文献出发，经过信息抽取、知识表示、图谱

构建与推理等步骤，最终支持循证医学中的临床决

策任务。该流程体现了知识图谱在医学决策支持中

的端到端作用路径。

临床路径优化是另一重要应用，通过分析大量

患者治疗轨迹与预后关系，发现最佳诊疗路径并提

供实时指导。可以基于知识图谱进行临床路径系统

的开发，通过整合患者诊疗数据和医学指南，优化

患者的诊疗路径并提高治疗依从性。

将知识图谱与大型语言模型 (LLMs) 相结合，

可提高决策支持系统的准确性 [21]。例如，2024 年

的研究提出了知识超图增强的 LLM 生成模型，特

别针对循证医学场景，通过重要性驱动的证据优先

级算法支持复杂临床查询 [22]。

3　关键应用场景分析

3.1　药物重定位与精准治疗

药物重定位是知识图谱在循证医学中最具影响

力的应用场景之一，具有显著缩短药物开发周期和

降低成本的潜力 [23]。Rephetio 项目构建了包含 4.7
万个节点的 11 类关系，以及 225 万条关系的生物

医学知识图谱 Hetionet，整合了来自 29 个公共数据

源的信息，该项目采用基于元路径的方法预测药物 -
疾病关系，并通过逻辑回归将多种路径证据整合为

统一的重定位分数，预测了 20 多万种化合物 - 疾
病配对的治疗可能性 [24]。

Rephetio 成功预测了多个高置信度的药物重

定位机会，如预测抗癫痫药物托吡酯对炎症性肠

病的治疗效果，随后在动物模型中得到证实。在

COVID-19 大流行期间，多个研究团队基于知识图

谱快速识别了潜在的抗 SARS-CoV-2 药物，如巴瑞

替尼，该药随后在临床试验中显示出积极结果并获

得紧急使用授权 [8, 25]。

因此，我们发现通过整合基因表达谱、蛋白质

相互作用网络和临床试验数据得到的层次化知识图

谱框架，可以用于自身免疫性疾病的药物重定位。

该框架在结节病、儿童肾脏癌症等疾病的回溯性验

证中，成功将大部分已知有效药物排在候选列表的

前列，显著优于传统的单一数据源方法。该框架的

一个创新点在于引入了“治疗证据强度”层次结构，

将不同类型的证据 ( 从分子机制到临床验证 ) 整合

到统一的评分体系中 [26]。

3.2　罕见病诊断辅助

罕见病诊断是医学领域的重大挑战，罕见病影

响全球约 6%~10% 的人口，并且患者普遍面临诊断

延迟 (25% 需 5~30 年确诊 )、误诊 (40%)、不当治

疗及信息沟通不畅问题 [27]。而生物医学知识图谱通

过整合分散的罕见病知识和复杂表型 - 基因型关联，

正在革新罕见病的诊断流程。

FindZebra 系统是知识图谱辅助罕见病诊断的

典型案例，基于包含罕见病和相关表型的知识图

谱，通过深度学习模型将患者症状映射到标准化人

类表型本体 (Human Phenotype Ontology, HPO)术语，

然后计算与知识库中疾病表型的相似度生成诊断

建议。在 56 个测试案例中，FindZebra 将正确诊断

排在前 10 位的准确率达到 62.5%，显著高于通用

搜索引擎 [28]。图 6 为 FindZebra 官网的界面示意图

图5  “证据-知识-决策”转化框架图
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(https://www.findzebra.com/search?q=sinus)，该系统

基于知识图谱和人类表型本体 (HPO) 构建，通过输

入患者症状自动匹配可能的罕见疾病，为临床提供

辅助诊断建议，体现了知识图谱在实际诊断工具中

的应用价值。

除此之外，RareNet 系统整合了患者表型特征、

基因变异和代谢通路信息，构建了多层次的患者 -
疾病相似性计算框架。该系统利用图注意力网络学

习不同表型特征的重要性权重，并结合基因 - 表型

关联网络进行推理，在复杂罕见病测试集上，将正

确诊断排在前列的准确率较传统表型匹配方法有显

著提高，并在临床试点中辅助诊断了多例困难病例。

图 7 为 RareNet 官网的示意图 (http://www.rarenet.
eu/symposium-2016)，该系统整合了表型、基因变

异和通路信息，结合图神经网络与注意力机制，实

现对复杂罕见病的辅助诊断推理，进一步证明了知

识图谱与深度学习技术融合的前景。

3.3　多病种共患管理

多病种共患 (multimorbidity) 已成为现代医疗

体系的重大挑战，超过 60% 的老年患者同时患有

多种慢性疾病 [4]。传统循证医学框架面临严重局限，

因为临床指南通常遵循单病种方法，缺乏对疾病间

复杂相互作用的考量 [11, 29]。

知识图谱通过其独特的网络结构，为多病种共

患管理提供了创新性解决方案。通过构建疾病关联

网络，将疾病作为节点，通过多种关系类型 ( 如共

同分子机制、药物相互作用、时序模式 ) 连接相关

疾病 [1]。另外我们发现，用药管理是多病种共患的

核心挑战，当患者服用 5 种以上药物，就会导致药

物相互作用风险显著增加 [17]。

基于知识图谱的决策支持系统，可以通过整合

患者的电子健康记录和临床指南，构建三元组的医

图6  FindZebra系统
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学知识网络，为患者提供个性化用药建议和风险预

警，基于知识图谱推理和患者相似度计算推荐治疗

方案。通过知识图谱技术的加持，能够让临床辅助

决策系统大大减少多病种患者的药物相互作用不良

事件，并提高医嘱符合率，改善患者的临床结局。

4　现存挑战与解决策略

4.1　证据质量评估难题

证据质量评估是循证医学决策的核心环节，在

知识图谱语境下面临独特挑战 [11]。知识图谱中的关

系往往源自多种异质数据源，具有不同的可靠性水

平和知识粒度 [6]。

我们发现，虽然循证医学领域已建立成熟的证

据分级系统 ( 如 Grading of Recommendations Assess
ment, Development and Evaluation, GRADE)， 但 这

些框架难以直接应用于图结构中的三元组关系 [11]，

并且知识图谱中的关系也缺乏标准化的质量标识。

比如，同样表示为“药物 A- 治疗 - 疾病 B”的关系，

可能源自随机对照试验的高强度证据，也可能来自

病例报告的低级别证据。

因此，可以根据证据来源类型、置信度评分和

跨数据源一致性，为三元组关系分配动态质量评分，

建立起一种基于证据级联的知识图谱质量评估框

架。这种框架在对大规模医学三元组的评估中，能

够自动识别出一定比例的矛盾关系和低可信度关

系，为知识图谱的质量控制提供了有效工具。

未来研究方向可以包括开发针对知识图谱的标

准化证据评级体系，构建大规模专家标注的证据质

量数据集，以及探索将形式化论证理论与知识图谱

技术相结合，更好地表示和推理复杂的证据关系。

4.2　动态更新难题

生物医学知识以前所未有的速度扩展，因此需

要持续更新以反映最新的研究发现 [1]。传统知识库

构建采用周期性更新模式，难以满足实时决策支持

的需求 [30]。现有生物医学知识图谱大多采用静态构

建方法，存在知识及时性不足、更新过程资源密集、

知识演变追踪困难等多重局限。

为解决这些挑战，可以通过增量更新的方法来

解决这一难题，该方法仅处理新增或变更的信息，

避免重建整个知识图谱 [31]。这种基于主动学习的知

识图谱增量更新框架可以通过评估文献的信息价值

和新颖性得分，优先处理可能带来显著知识更新的

图7  RareNet系统
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内容。该框架在实验中可以仅需处理较少比例的新

增医学文献即可捕获大部分重要知识更新，显著提

高了计算效率和知识时效性。

4.3　临床可解释性瓶颈

临床可解释性是生物医学知识图谱应用于循证

医学决策支持的关键挑战 [32]。虽然知识图谱本质上

具有较好的可解释性基础，但在实际临床应用中仍

面临多重瓶颈。首先，推理复杂度与可解释性存在

根本矛盾。现代生物医学知识图谱通常包含数千万

甚至数亿三元组关系，基于此进行的推理可能涉及

数十到数百步骤的路径分析或复杂的概率计算 [14]。

因此，医学专业人员在有限时间内难以完全理解过

于复杂的推理链。其次，知识图谱嵌入模型的“黑盒”

特性加剧了可解释性挑战。这类模型将实体和关系

映射到低维向量空间，通过向量运算实现高效推理，

但向量空间中的操作难以映射回人类可理解的医学

概念 [20]。

4.4　医疗数据共享障碍

国内的医疗健康数据的共享还面临多重障碍，

研究者在共享数据时往往要克服繁琐的行政审批

和数据库访问权限限制，而且对于共享后可能导致

的隐私泄露十分担忧。这些担忧因缺乏明确的法

律和伦理规定来规范医疗数据的研究使用而更加

严重。另外，2021‒2022 年中国医院信息化调查指

出，三级医院在医疗数据共享方面面临一个关键挑

战，即数据科学家的人才较为匮乏，这也导致了大

量的数据难以被很好地利用，大约在 600 多家医院

中，有 75.15% 的医院认为数据科学家的短缺是主

要障碍 [33]。

5　跨学科融合与发展前景

5.1　因果推理与联邦学习的整合

生物医学知识图谱与循证医学决策支持的发展

正展现出跨学科融合的趋势，特别是在因果推理

与知识图谱的结合以及联邦学习解决数据隐私问

题两个关键方向 [34]。因果推理长期作为循证医学的

基石，强调识别干预措施与预期结果之间的因果关

系，而非简单相关性 [11]。传统知识图谱虽能表示实

体间关系，但难以区分相关与因果，限制了其在临

床决策中的应用深度。将因果推理框架与知识图

谱有机结合可形成因果知识图谱 (Causal Knowledge 
Graph, CKG)[35]。在 CKG 中，边不再是简单的关联，

而是代表有向干预效应，支持反事实推理 ( 如果使

用药物 A 而非药物 B，患者结局会如何变化？ )[36]。

在技术实现上，结构因果模型与图神经网络的融合

创造了新型推理架构，能同时利用领域知识与观测

数据 [35]。

联邦学习也正逐渐成为解决医疗数据隐私与安

全挑战的关键技术。医疗数据的隐私敏感性和监管

限制使传统的数据集中方法难以实施。联邦学习通

过“模型到数据”而非“数据到模型”的范式转变，

允许算法在不同机构的本地数据上训练，只共享模

型参数而非原始数据 [37, 38]。

5.2　评价指标体系与临床整合

评价生物医学知识图谱辅助循证医学决策的效

果，需要平衡技术指标与临床实用性，构建多维度

的评价指标体系。传统知识图谱评价主要关注技术

精确度，如通过链接预测任务评估图嵌入质量，这

些指标在临床环境中意义有限。在循证医学决策支

持背景下，评价指标体系应兼顾技术性能 ( 知识覆

盖率、知识准确性等 )、临床相关性 ( 决策相关性、

证据质量等 ) 和实施影响 ( 用户满意度、工作流集

成度等 ) 三个维度 [39]。相关的多中心临床评估研究

提出了一种综合评价框架，通过平衡技术性能指标

与临床影响指标来评估知识图谱决策支持系统的实

际价值。在临床试点中，单纯依靠技术准确率指标

可能导致临床价值评估的偏差。与临床工作流的无

缝整合、对医生决策习惯的尊重以及系统响应时间，

往往对系统实际采纳更为重要。

5.3　未来发展趋势

生物医学知识图谱辅助循证医学决策的未来发

展将主要集中在以下几个方向。首先，实时证据整

合系统将彻底革新医学知识更新模式，通过自动化

文献理解、证据质量评估和知识图谱动态更新。这

类系统正从周期性批量更新向连续学习模式转变，

能够自主监控医学文献发布平台，即时提取关键发

现并评估其对现有知识体系的影响。其次，人机协

同决策界面将发展为交互式决策支持环境，通过自

适应解释机制、多模态交互和情境感知推荐，创造

医生与 AI 系统的最佳协作模式 [32]。这种设计理念

将 AI 视为“智能助手”而非“自动决策者”，保留

医生的专业自主权，同时提供认知增强支持。第三，

知识图谱与大型语言模型的深度融合将创造新一代

循证医学决策支持系统 [21, 22]。通过将结构化知识与

自然语言理解能力相结合，这些系统能够更自然地

与医生交互，理解复杂的临床查询，并提供可追溯、

可验证的循证支持。最后，基于知识图谱的“活指

南”(living guidelines) 概念将推动临床指南的动态
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更新与个体化应用 [40]。研究人员正在探索构建包含

多层次证据、动态更新机制和个性化调整能力的知

识框架，实现临床指南的持续优化。目前，这种动

态知识驱动的指南系统能够提高医疗决策与科学证

据的一致性，特别是在快速发展的领域和多疾病共

存的复杂患者中表现较好。

未来生物医学领域的研究趋势之一是如何构建

更大规模并开放共享的知识图谱资源。目前已有框

架 ( 如 KG-Hub、ClinicalKG、BioCypher、KaBOB 等 )
实现了跨数据库的知识图谱构建与交换 [41]。例如，

Nature Biotechnology 报道的临床知识图谱平台已经

集成了实验数据、公共数据库和文献中的信息，节

点近 2 000 万，关系超过 2.2 亿条，可用于增强组

学数据分析并辅助临床决策 [42]。这些进展表明，未

来通过开放共享知识图谱，将为循证医学提供更丰

富的结构化知识和决策支持。

6　总结

生物医学知识图谱正在推动循证医学决策从

“基于文献”向“基于知识”的范式转型，这一转

变具有深远意义 [4, 11]。知识图谱通过将分散的医学

证据转化为结构化、可计算的知识网络，实现了医

学知识的系统化表示与智能化应用。在这一新范式

下，证据不再是静态的文献集合，而是动态演化的

知识网络，能够自动整合最新研究发现，捕捉概念

间的复杂关系，并支持多层次的临床推理 [14]。

尽管生物医学知识图谱在辅助循证医学决策方

面展现出巨大潜力，但仍面临多重挑战。证据质量

评估需要开发针对知识图谱的标准化评级体系；动

态更新机制需要更高效的增量学习方法；临床可解

释性需要更贴近医生认知模式的解释框架。已有研

究工作针对这些挑战提出了一系列解决方案，例如

证据级联的质量评估框架、基于主动学习的知识增

量更新方法和多级临床可解释性框架。这些方法在

临床实践中被证明有助于提升知识图谱辅助决策系

统的实用性和可接受度 [29, 31, 32, 39]。

生物医学知识图谱是循证医学发展的新方向，

通过建立从数据到知识，再到智能决策的完整链条，

为提高医疗质量、优化资源配置和改善患者预后提

供了强大工具 [14, 32]。未来的发展将依赖于技术创新、

临床验证和跨学科合作的协同推进，共同构建更智

能、更精准、更人性化的医疗决策支持体系。
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