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Abstract: This review examines the integration of mechanistic modeling and advanced machine learning in systems

biology, which we define as the "knowledge-infused learning" paradigm. We dissect four primary modes of
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integrating biological knowledge into computational models: (1) encoding continuous dynamic processes using

neural ordinary differential equations and physics-informed neural networks; (2) representing structural relationships

with graph neural networks based on biological pathways; (3) inferring directed interactions from observational data

via causal discovery algorithms; and (4) learning the "biological language" through large-scale, self-supervised

foundation models. For each mode, we analyze its underlying methodology, highlight landmark applications, and

provide a critical assessment of its fundamental assumptions and practical limitations. We argue that while each

approach offers powerful solutions to specific challenges (such as handling irregular time-series data, integrating

multi-omics datasets, or generating novel hypotheses), their true potential lies not in isolation but as components of

a unified neuro-symbolic framework. This review concludes by synthesizing these themes and charting a course for

building hybrid models that integrate dynamic, structural, causal, and large-scale learning representations, aiming to

move beyond mere prediction and achieve genuine mechanistic insight.

Key words: biology-driven mechanisms; artificial intelligence; foundation models; biomedical large models;

multimodal learning; causal inference; generative models; computational biology
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NGRS R AR B M, AT A= T
Fo BRI EIR AR R 2, BEAE U g N
ZoemhAr e, H T A SR U A 2R
7%, 44 CRISPR R sl ZiWab %51 ik
P B R SR A A A v 5 B RZRME G R, I
SR AR LR PR R R DAL, il I B S8 5
HSLA IR, VPG AN IR BRSO T R 7 1 — B0
RN E AR pkiR, A BhEE . LRI A YR
RGeS T - > gt R SR 45 4
HREWERENEAZ, FEEETIEN . faeikit
S ERAEP L B, Wb m g s fE AR A
KB B ERERLR.

FRUEBATE SRR 1 R B R ISV EAE A
Wsch s 2 AR R, BT R SRR R
ERFE AT TN EMMAER —E&HE. #ln,
CausalCell 7E 2 i LAl LA HE 4 Hh R Ge bb A 11 A A
RRIMEE, RIET LK PC HIkL & %14
ST G 56 AE AN R4 2R B AT R R EL ) R PR RN
Fase U CICT 7 2 BBl 5 H 5 scRNA-seq 5 f

b, AHEE AR FF GRN HE Wi 75 V5 7E rpAUPR 2545 b
EAREFSG, VI GRRE AS E AAE OC B R  FR AR X
AU ™, CausalBench M F| F K K% CRISPR #.
21 4 3 B VP A 20 A RP IR R EE M 2L ST Uik, 4
R IR SparseRC. Mean Difference %5 /7 VATE AN A 41
Ji R AN T 6 P N R AR A, T2 B A LA
BRI EAT B s Bl P RE ] B 55 T LA
A EEE ER B BT, X e S gE R TN P R
RIVFIFAERFEY RG T E R T B40E
P, 53— 75 T o ST EIAIE 1 FRATTAE AR A L X
8 IR THAS BE (6 B

TEH AR RO EEE b, IR ik DA A
ZANEAAREIT s g 7 € EiEYE . Doutreligne
45 B DL MIMIC-ICU B35 X R, e 1 & Bk
G en RN Al SR AR TR T %, 1% B AR
IOMEZR R BN, FER FBEHLAR AR AIPW (130
Fafg (i, fEFe st 2 5 13 21 28 RAET: %
RN 5 B AL BRI 45 SR v B — 2 A R R ke
R B W AR AR MR A%, N EHR R
il RCT 45 @ $2 4t 7 2 B 16 75 30. Chen %5 B FI| H
736 0 I FEMRAE e EHR, R SRS IRER
fIE KNN [ ITE fhvHE 8L, 75 B Sl BOsiRyT
3 B HETR R A FL 2 ik F) 0.703 H10.796,
T2 H 5 BRI R 6 U R R 1 P 2 3R 2 B, i
B F EHR BIAMARAGIE ST 20N Al TF 7E SE B v o vh L
A S-S B, (HRAE EHR B A R DR SR 4
B, IR BkR AT iR . EHR #0045 775 1%
BRI A5 B I B O R 2 S A 0 5 351 A i) L,
HE— D IRIE T B SE R SRS R 7T B

W 3 S B IR LR S FH W AR A B T T
R, AT g e AR R A R R A B B AR 5
IR RERE LI B BN R R S “ e

=3 FAREKMEZNRIZS MM

ik PCHLIE
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FHI,  FRATTN % Hf e X TR .
I EENEATET “RI” oE— i EZ LN R,
T AE TR A5 K B AR 51 2 e AT AT
PRI AE 5 & i e H 2D BUUAN B A6 22 1 B8] SR I
#, ARG AT DR e AT SR AR B0 s O
BEBTHW - LM HME g . RR R
SIEA G EE L. — A8 IR H
A BUF F ORI SRk A BRAR A (G
A AR BB ERA)S . B s
(1) 73 S T 3 T4 G AU RTR AT 258 () 28l
SRAH N, AL 5 T A HE B, X R T A
Hs I O 5 SEBRRME BT Z R B 5K 7T .

ESEBREM RS T, RREMEECEWRE
B AR S, il 5 852503 256 IE . CellBox
M B IR AN 2B B s R, EEAES]—
AT ARRE )5y 7 FE R AR X 4%, 7EAX LA 89 M3
A INGREIRTHE R, W4 11 54 WL B 245 I XL 2y
A 1 55 2R AR ) I 0 -5 S 6 W B PR AH 9% R B
X% 0.93, FHHEHIEH MEKi+c-Myc. RAFi+c-Myc
SR G, LA G e 3G 5 1 8ORAE JE SE s T
FIOAE 7. BETS WU MKE B J53 3% 38R o s 21
IS 5] 5 270 HE BT H 627 31 945 2645 [a] 321 1) R 5% I 2%
R 10 A% 5% H 73 08 S48 AT GTEx Jifi 2 21
trans-eQTL &35 & X W 5 it AT AM R0 AIE, fReZX
7531 340 ik 36 328 i R 5 7, BOE R 4R GTEX
WHER 2 170 %, AE A0 Je Rt 1) Th e 38 uE AR
BAE BT, fE A N L, PerturbDB #2466
£ Perturb-seq H4f AL =Bl G 2, T 2R
P I AEWT 552 Fhig 7D L xS, SRR
SR SIS R AF BUESE, 0 B I8k PR SR U 48 I 2 3
ATHE A — A B IR B A BTE 250 R I3 = b B sk
B A ] i A B

SR, AR 2 A RO e R SR o 300 P 28> ol
A BE MR AR b 52 3 w00 e v R BR o 2RI
REJTREAT T (B AR R AT ), 12 H
REWEg T PR TTEX 1 (DR AT KRR 2 )
R Yo BRI, A ik SR SR I ) R R
BB HOR (40 CRISPR i ik ) () A Sk 25 A ]
Ire ARKEA M IN “RIREE” A REA 2 TR L
A PR A L B R BV, T A R A A A S 1
T A Sk REBE R e HERE T — . B R
BN, DLEA R 7 AT B SE )
PR L P,

5 #ena: EfRESHRNNE

51 EfRESENK

SRR Y 2 — RO, 3 BT Trans-
former 2244, {FH B W E HirEwER . T Z 8.
TARZERIBHE EHEATIIINGR s HAZ 0 AR “T
W - iR a: BERLLE T ZRP B 2 2] — A4
WHpEHRR (Bl “AEMFERES T ), RERT
b B FA BN 25 2R B RT3 B Ak 22 o 0 1T AT
55 0, IR OTVEARTR T AR B AR A Gh E
XA, Z AT PINNs Il GNNs J7i4 75 2\ 2500 1
B RN N, T A AL ) B A2 W I B
R HASE Hh B 2t U1 498t A P AR R B A 1R 7
BT IR, AN A En N
52 ZEfHI#51: GeneFormer 53 REIES

GeneFormer /& — % T~ Transformer [ 5 fifi 15
B, RS A A SR A kAT T N
Bl RS E S 2 (masked language modeling) 1]
H A ke ] B R W 2% 1 sh 2, K g il “ )
T, FEEMLA “ a7 Y, GeneFormer fit 58 A [
N 2 — & FFEA ¥ 2] (zero-shot learning) A1t 5
BB (in silico) PLal. ZAEA AT LALE AR Wit AF
CE7/ R EA € AR RN N R B3PS 5 iR § A e
PRI FT N B3 R % R U7 328 005 ik DR AN 2 V6 97 4B
B, Horh— SR O S B T SEIRIRAE s
53 EfHIfR2: ESMFold5ERREES

ESM (evolutionary scale modeling) £ %] /& & [
JRE F AL AT AR . AT S 0 ESMFold,
BN — N ERAC K B B BT EIZR B
FEA R RN, EREE AL IR T A T
EAFRM= 4454, 5 AlphaFold® #HEL, ESMFold
HA MR % . AlphaFold ™ B 4K 4 £ & 7 41 L
Xt (MSAs) SRIRAIILREAR L, 1T ESMFold fE15 &
R R 2 ) T IX s, X 43 ESMFold
(4 3 B L8 AlphaFold R LA $&E 2, FFHX T
B BRI FERIE AR (AULE A — X E A
FRFEHEP = NERAREREA S — LHES
g, AR, R FEE G R (KRR
A ) AR, HAER AT RE(K T AlphaFold .
54 FEESYIENFESXE

FERNERCER T B4R A U T,
EOR BB A i ok 1 702 Pk o

(1) “HBFE” I . ABEARY 1) 5 e P 50 G ok DAAR
SR T o AT S R TI (RE 2EAT RE fAR b
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TFANSRAE, TR A A F B R 7 R
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G) il W52 A0 - IX LRI IEILE A
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XTI 9T 78 43 1R A o B0 s 1) I FE AR ). B AL T
A2 5 2] FRIBORIZ LG DL, DT B fit) FE 1) A= 4 2 T
A LIz L RE )

(4) RN 5 MR R AR - FEANTE AR R
g b, gy - iR o el fRa ik Em s 7
AR, WA SR A K, Geneformer £ %)
3000 ISR I S 4 BTN SRS, AU A BRAT
RS ER O, (EREAE 2 M S G R X 25 50 77
AR AT S TR R e SR T TN MEAf 2, FRAE O
WU /A S 2 0 B DA e 7 e v o
M EL T EB G TSR R IERERE D Y
S — AR R f I, BRI AN 1 B OB T B
A GE S S BN, BT PEE R, T
FEECREBLR, B, ARG ML 2 ST AR ] D
J¥ et B UG B R 2R SR Al AR 1 R, G AR SO AL
PE7e it U, FEFE AL ) @A 5 T, HyenaDNA
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18 N RIS, Ll /T Transformer 1) 245
AP GEARE, 75 12 MESS FEASH SOTA, I
7E GenomicBenchmarks |- ~F¥J#& T+ 25 10 4~ H 45
I RAEM %R, RPUESHEMENS HAWE T,
r S5 B L B ABE R A 5 RO SR AN 55 12 A B AT L
UL 5 &8 #8305 K ) Transformer #2784 72, ix 5] &
T CHUNGR - o7 JE A BIAR A BLEE, R
THHTERG . AT SR IR 0 B

R AR R AT N, FIAR
GuitkiEdIRE i - IUEJE R, ST AN BA A i o
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EREAN T SRR AL Bl DL 73, 0 s AN e T
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EH AT PR i B Y JE R SEAR E, XA
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EVFRIR RGNS, SRR S BA A Hh i S B
P, DL M M “RTIGIETE T A HEEAL,
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BRI S A ERRT - BERAESPT B, R AE
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R YIZRaLFE, AR A B R AR AU H1 5
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GeneFormer 1 ESMFold &5 #& 7 1) 5 T 3 B,
A=) 2 G5 TP AT B AR AE — MR K RS s Hh 5 2T 1Y
CHlHTERT. R, EATH R BRYE (4. W)
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TER M TR iR R 2 1E X S ASE Y i U3 44 H £ %
W T EHRE— “AL#BRE” BFIARK,
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6.1 LZATIFIRT

AR RTR TR R R WITE—i. AN
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Pl AR S 5 (JERBAE AL ) JREAH B 5E 4, 1
RH AR —ANEIEFBENAEMRILR S T E
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Tl 4R — AN SE IR R 4% R R, SR e LT
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KA BRSSO ZR, BRI, SNAH
SEVERG TR TRESHRIEPPA IS, RTTESESS.
ARGz LRE

Rl 2 A Bt A U - S
Bl b BB ARHE, 45 & 5 2] R IA A T T
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HHE R AEF R B ROR S, hfs e i o RAL
MRS RE . A — BBk, a4
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6.2 HE-TFS5HRTAIRE

BA VX — B S HE Z A - 555 ATY A
2R IRIE S o) P U I R R, H bR A
S 8 0 50 B O AF 5 R () AT HE R,
[ I AT 5 £ vt 4 A0 (54 20 A 3 B PR 7 B
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AE /1. X BT QIR THR AU AR e PR S s AR A — Bk,
EATIT e 75 5 R P | RS BRI L B RUBE RS 55 X
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PATRE A, XTI e H Aro2 It iR 1k
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REWIEAESE T, AR B ] £ IR R 37 5t
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ATl WEE 73 I R A AR T R
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AT T 5 (AT SR AUk FE A AL R A
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