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Abstract: From the information age to the intelligent age, artificial intelligence technology represented by large
models has epoch-making significance, and its rapid development is the focus of global scientific and technological
research. As a product of the deep intersection of artificial intelligence and biomedicine, biomedical foundation
models, relying on massive biomedical data and large model technology progress, are promoting the transformation

of life sciences from traditional experimental drive to the "AI+" intelligent paradigm by integrating multimodal
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biomedical data, innovative algorithm architecture and high-performance computing power. This article sorts out

the core data composition, collaborative technology development, diversified scenario application, paradigm

changes brought about by biomedical foundation models, technical challenges, and current research directions. The

continuous evolution of biomedical foundation models is expected to leap from "auxiliary tools" to "intelligent

collaborators", leading to the intelligent transformation of traditional biomedical research work.
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