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摘　要 ：从信息时代到智能时代，以大模型为代表的人工智能技术具有划时代意义，其发展迅猛，是全球

科技研究的焦点。生物医学大模型 (biomedical foundation models, BFMs) 作为人工智能与生物医学深度交叉

的产物，依托于海量生物医学数据和大模型技术进步，通过整合多模态生物医学数据、创新算法架构与高

性能算力，正在推动生命科学从传统实验驱动向“AI+”智能范式转型。本文梳理了生物医学大模型的核

心数据构成、协同技术发展、多元化场景应用、带来的范式变革以及技术挑战难题和当前研究方向。生物

医学大模型的持续进化有望实现从“辅助工具”到“智能协作者”的跃迁，引领生物医学传统研究工作的

智能化变革。
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Abstract: From the information age to the intelligent age, artificial intelligence technology represented by large 
models has epoch-making significance, and its rapid development is the focus of global scientific and technological 
research. As a product of the deep intersection of artificial intelligence and biomedicine, biomedical foundation 
models, relying on massive biomedical data and large model technology progress, are promoting the transformation 
of life sciences from traditional experimental drive to the "AI+" intelligent paradigm by integrating multimodal 
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biomedical data, innovative algorithm architecture and high-performance computing power. This article sorts out 
the core data composition, collaborative technology development, diversified scenario application, paradigm 
changes brought about by biomedical foundation models, technical challenges, and current research directions. The 
continuous evolution of biomedical foundation models is expected to leap from "auxiliary tools" to "intelligent 
collaborators", leading to the intelligent transformation of traditional biomedical research work.
Key words: biomedical foundation models; multimodality; artificial intelligence; paradigm shift

1　生物医学与大模型协同创新

生物医学大模型作为面向生物医学领域设计、

基于超大规模预训练策略与多模态学习技术构建

的人工智能模型，是人工智能与生命科学交叉融

合的重要成果。一方面，生命科学领域长期积累

的多模态生物医学数据，与信息时代所积累的海

量通用文本数据，成为驱动人工智能模型系统演

进的关键生产要素。另一方面，智能时代的算法

迭代与算力基础设施的提升，促进了生物医学数

据的深度挖掘与知识发现。这一协同演进体系以

数据为基础、以算法为引擎、以算力为支撑，并

通过多元化应用场景，实现了双向赋能 ：大模型

技术为生物医学领域基础研究与应用提供了高效

工具，而复杂多样的生物医学问题又反向驱动大

模型架构的迭代升级。大模型技术与生物医学领

域的深度融合，正以前所未有的速度推动两种学

科的范式转型与跨越式发展 ( 图 1)。

1.1　数据积累 
测序技术的发展产生了海量多组学数据，与全

球医学信息化时代积累的临床数据共同组成了人工

智能赋能“大健康”产业发展的数据生产要素
[1]，

是生物医学大模型训练的基础。2003 年，人类基因

组计划 (HGP) 的完成 [2] 不仅标志着基因组时代的

到来，也是基因组数据标准化采集以及公共数据库

系统性建设的开始。2010 年之后，以 Illumina、华

大 BGI 平台为代表的新一代测序技术 (NGS) 的发

展将单碱基测序成本降至 HGP 时期的十万分之

一 [3]，使得各类公共数据库规模进入指数级增长阶

段。截至 2025 年 5 月，美国国立生物技术信息中

心参考序列库 (NCBI Reference Sequence Database, 
RefSeq)[4] 收录了超过 16 万个物种的 4 亿多个蛋白

质与超过 7 000 万条转录本的序列信息，基因组分

类数据库 (Genome Taxonomy Database, GTDB)[5] 收

集了超过 71 万细菌、1.7 万古细菌的基因组信息，

图1  生物医学大模型协同演进体系
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蛋白质数据银行 (Protein Data Bank, PDB)[6] 已发

布超过 23.8 万个结构数据，并仍以每年 7% 左右

的增长率持续扩增规模 。同时，临床信息化平台

以及医学相关研究已积累亿级规模的临床数据，

涵盖医学影像、电子病历、电子健康记录、生物

医学文献等非结构化图像及文本信息，为多模态

生物医学大模型的训练提供训练数据。如常用于

医疗大模型训练与医学能力评估的 MIMIC- Ⅲ数

据集
[7] 收录了超过 6 万个患者的临床医疗记录，

成立于 2001 年的 PubMed Central[8] 收录了超过 1 100
万份生物医学领域文献，为生物医学大模型的训

练提供了领域专用语料资源。多组学数据反映了

生物系统不同层面的遗传与表型信息，与临床数

据组成了跨尺度、多模态的复杂生物医学数据体

系，为揭示疾病发生机制、药物发现以及精准医

疗提供了丰富的素材，使得当前时代比历史上任

何时期都更接近全面解析生物系统功能与疾病发

生发展机制的目标。

1.2　算法迭代 
在数据大幅增长的背景下，深度学习算法的

持续演进为跨尺度多模态生物医学数据分析及生

物医学大模型构建提供了强力引擎。深度学习算

法在过去近十年间飞速发展，其中 2017 年推出的

Transformer 架构
[9] 打破了传统循环神经网络 (RNN)

和卷积神经网络 (CNN) 在长序列数据处理方面的局

限性，通过注意力机制 (self-attention) 理解词元

(Token) 之间的关系，在长序列建模、多头注意力

机制与上下文捕捉能力等方面具备显著优势，成为

深度学习技术发展的重要里程碑。2018 年，OpenAI
发布了第一代生成式预训练 Transformer (GPT-1)[10]；

同年，Google 提出了基于 Transformer 的开源预训

练模型 BERT[11]，开启了 AI 开源开放的新阶段。此

后，Hugging Face 开源 Transformers 库整合了 GPT、
BERT 等多种预训练模型，极大地降低了自然语言

处理的研究门槛。基于 GPT 与 BERT 的大规模预

训练语言模型，在自然语言理解与生成任务中取得

了显著成果，并因其能高效处理大规模文本序列并

表征复杂上下文依赖关系，而逐步扩展至生物信息

学领域，诞生了 DNABERT[12] 等模型。2020—2023
年间，Vision Transformer (ViT)[13]、对比语言 - 图像

预训练 (Contrastive Language-Image Pre-training, CLIP)[14]、

Segment Anything Model (SAM)[15] 等标志性工作相

继出现，为生物医学多模态大模型的构建提供了可

迁移、可扩展的技术支持。

1.3　算力提升 
智能时代，算力成为驱动生物医学大模型持续

演进的核心支撑。特别是在模型参数规模、精度和

多模态能力不断扩展的背景下，高效、可扩展的计

算系统对模型训练和推理的支持作用愈发关键。算

力提升主要体现在两方面：大规模计算中心的集群

化建设与 AI 专用计算芯片的持续迭代升级。首先，

超大规模计算中心的建设使得训练千亿级别参数模

型成为可能。从 GPT-1 到 GPT-3，模型参数量从 1.17
亿增加到 1 750 亿，后者单次训练所需算力高达

3 640 PFLOP/s-day[16, 17]。以谷歌为例，为支撑千亿

甚至万亿级别参数模型的训练，构建了由 4 096 个

TPU v4 芯片组成的超级计算平台，单芯片性能较

v3 提升约 2.1 倍，整体规模扩大 4 倍，使得平台整

体算力提高了近 10 倍，BF16 算力峰值达到 1.126 
ExaFLOPs，支撑了 Med-PaLM 等千亿级别参数模

型的训练 [18]。其次，AI 专用芯片的迭代为模型训

练提供更强的单卡算力支持。以英伟达为例，其

2022 年发布的 H100 Tensor Core GPU 基于 Hopper
架构，在 FP8 精度的峰值算力较上一代的 A100 提

升约 6 倍
[19]，使得 ESM-2 (650M)[20] 模型在相同数

量的 H100 上训练速度较 A100 提升 1 倍。

1.4　多元化应用 
生物医学大模型的多元化应用正在引发传统研

究范式的改变，主要包括三类场景应用：其一，驱

动基础生命科学研究，如 Evo 系列模型能理解并按

需设计基因组序列 [21, 22]，Luca 系列模型 [23, 24] 能综

合学习遗传和蛋白质组语言；其二，革新蛋白质结

构解析与设计方法，如 AlphaFold 系列模型改变了

蛋白质结构预测主要依赖物理模型的现状
[25-28]，

ESM[20, 29, 30] 系列模型能够根据提示信息设计蛋

白质；其三，临床诊疗智能化革新，DeepSeek[31]、

ChatGPT[16, 32]、通义千问 [33] 等为代表的大语言模型

能整合电子健康记录、医学影像等异构信息，辅助

制定个性化治疗方案，促进智能诊疗模式升级。

2　创新应用引发范式变革

生物医学大模型结合了海量多模态数据、创新

算法架构和超大规模算力，最终通过多元化的场景

应用正在引发一场前所未有的范式变革，推动生物

医学研究从传统实验驱动向“AI+”智能驱动模式

转变。以 Evo、AlphaFold、DeepSeek 等为代表的

大模型，已在序列分析、结构预测、临床辅助决策

等领域取得突破性进展，极大提升了工作效率，改
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变了传统研究或问题解决的方式。随着大模型与生

物医学研究进一步深度融合，我们有望见证更高效

的靶点发现、药物研发以及个性化治疗方案，彻底

重塑生命科学研究范式。

2.1　序列大模型

基因组等高通量组学驱动的序列大模型已经能

从海量序列中学习生物遗传序列的底层规律。Evo
系列模型是迄今为止参数规模最大的生物大模型，

训练数据主要来自 RefSeq、GTDB 在内的多个基因

组数据库。Evo 通过在覆盖整个物种进化树的海量

基因组数据上进行训练，实现了对现有 DNA 的理

解以及从头编写 DNA 序列的能力，打破了传统生

物设计的局限，实现了从序列到功能的直接映射，

开创了生物工程序列设计的新范式，为合成生物学

研究提供了全新的方法和生物设计工具。2024 年 2
月发布的 Evo 模型基于 StripedHyena 架构，在 270
万个原核生物和噬菌体基因组上进行预训练，实现

了从分子到基因组尺度上精准的生物序列预测和生

成任务
[21]。2025 年 2 月发布的 Evo2 模型采用了创

新的 Striped Hyena 2 架构，其训练数据规模扩展至

12.8 万个基因组的 9.3 万亿个 DNA 碱基，涵盖人类、

其他动植物以及真核生物，上下文长度可以达到

100 万个碱基对，其序列预测和生成的能力优于上

一代模型
[22]。Evo 模型能够不依赖相似序列生成

CRISPR-Cas 系统等复杂分子化合物。Arc 研究团队

通过微调 Evo，实现了 CRISPR-Cas 分子复合物和

转座系统的生成式设计，并成功验证其功能活性
[21]。

在乳腺癌相关研究中，Evo2 能够以 90% 的准确率

预测 BRCA1 基因突变的有害性，指导癌症的精准

治疗
[22]。

Luca 系列模型则进一步拓展了序列大模型的

能力边界。2024 年 7 月份首次发布的 LucaOne 模

型基于来自 16.9 万个物种的核酸与蛋白质序列，采

用面向 DNA、RNA、蛋白质的统一架构进行自监

督与半监督学习训练 [23]，实现了对分子生物学“中

心法则”的高效学习与泛化理解，帮助研究人员更

加深入地理解生物世界的底层逻辑。在此基础上，

2025 年 6 月发布的 LucaVirus 模型作为 LucaOne 在

病毒学方向的衍生模型，专门用于病毒基因组与蛋

白质序列的理解，在多种病毒学任务中表现出色
[23]，

为病毒学基础研究及疫情防控提供了强大的工具。

未来随着更丰富模态、更多数据的加入以及模型的

持续升级，Evo、Luca 等生物大模型将更深入揭示

生物系统的结构、功能与调控规律。

2.2　结构大模型

结构预测与蛋白质设计模型极大地加速了结构

生物学研究。AlphaFold 系列模型是用于蛋白质与

DNA、RNA 等生物分子三维结构预测的领域专用

模型。该系列模型主要基于 PDB 数据训练，并在

模型迭代过程中逐渐加入 BFD、UniRef90、UniProt、
RNAcentral、PubChem 等数据库，最终实现了对生

物分子结构的高精度预测，将蛋白质结构的获取方

式从原来主要依赖冷冻电镜等实验方法转变为大模

型预测的新范式。2018 年，DeepMind 团队首次将

深度学习引入蛋白质结构预测领域并发布首个

AlphaFold 模型，展示了深度学习在蛋白质结构预

测方面的潜力。2020 年发布的 AlphaFold2 首次实

现无同源模板条件下原子级精度蛋白单体结构预

测。借助 AlphaFold2，人类蛋白质组的结构覆盖率

从原来的 17% 扩展至 98.5% [34]。2024 年发布的 Alpha- 
Fold3 基于全新 Pairformer 模块与扩散生成架构，摆

脱对多序列比对数据的依赖，能够对包含蛋白质、

核酸、小分子、离子和修饰残基在内的复合物进行

联合结构预测，其在多种生物分子相互作用预测精

度上超越专门工具。截至 2024 年，成立仅三年的

AlphaFold 蛋白质结构数据库 (AlphaFold DB) 共累

计收录超过 2.14 亿个预测蛋白质结构
[35]，其数据

已被整合到 PDB、UniProt、Ensemble 等主要数据

资源中，对结构生物学的发展产生了重大影响。

2024 年诺贝尔化学奖的一半奖项被授予 AlphaFold
核心开发者 John Jumper 与 Demis Hassabis，以表彰

他们在蛋白质结构预测方面的成就
[36]，标志着

AlphaFold 系列模型在结构生物学乃至更多相关研

究领域产生了革命性影响。

基于大型语言模型的 ESM 系列模型在蛋白质

结构预测方法取得了显著进步，其训练数据主要来

自 UniRef50、PDB、AlphaFold DB 等数据库。Meta
团队于 2021 年推出了具有 650 M 参数的蛋白质语

言模型 ESM-1b[29]，并在 2023 年推出了蛋白质语言

模型 ESM2 和蛋白质结构预测模型 ESMFold[20]，实

现了基于蛋白质序列的端到端结构预测。与依赖多

重序列比对和模板结构的 AlphaFold 不同，ESMFold
支持基于单条输入序列从头设计蛋白质，如宏基因

组蛋白质结构预测场景，且计算效率更高。最新的

ESM 宏基因组图谱包含了超过 7 亿个预测蛋白质结

构
[20]。2025 年发布的 ESM3 支持多模态信息输入，

能根据功能关键字等提示信息推理蛋白质序列、结

构与功能 [30]。Meta 团队利用 ESM3 通过关键残基
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序列、功能关键词等提示信息，迭代生成了与现有

绿色荧光蛋白进化距离超过 5 亿年的绿色荧光蛋白

esmGFP，证明了其在蛋白质设计领域的巨大潜力。

未来随着模型规模和数据量的增加，ESM3 有望生

成更加复杂和全新的蛋白质，革新蛋白质工程领域

的研究进程。

在当前，结构大模型凭借其精准的分子结构预

测与设计能力，已在抗体开发、免疫治疗等产业应

用领域展现出了革命性应用潜力。在抗体设计领域，

多模态生成模型 Chai-2[37] 能够在零样本条件下以

16% 的命中率设计功能性抗体，较传统计算方法提

升超 100 倍，成功将抗体研发周期压缩至 2 周内，

标志着抗体研发从经验驱动走向计算主导设计的

重大跃迁。在免疫治疗领域，Householder 等 [38]、

Johansen 等 [39] 以及 David Baker/ 刘炳旭团队 [40] 通

过 RFdiffusion、ProteinMPNN、AlphaFold 等生成式

人工智能工具设计出具有高亲和力与高特异性的

pMHC 结合蛋白，能更精准地针对肿瘤抗原进行靶

向治疗，为个性化精准免疫治疗提供了可行路径。

2.3　智能医疗大语言模型

大语言模型凭借其强大的自然语言理解与生成

能力，正逐步改变医疗诊断、临床决策与医疗知识

应用模式。ChatGPT 是由 OpenAI 于 2022 年推出的

生成式人工智能聊天机器人，能通过多模态输入理

解人类语言并生成上下文相关的互动响应。在临床

医疗领域，ChatGPT 展现出广泛的应用潜力：Ayers
等

[41] 对比了 ChatGPT 和医生针对患者在线提问的

回答，发现 ChatGPT 的回答质量和同理心评分均高

于医生；基于 GPT-4 的模型已通过包括美国医师执

照考试 (USMLE) 在内的多个专业考试，在医学问答

以及病历总结等任务中展现出接近专家的水平
[42] ；

ChatGPT 可以作为教学工具，帮助医学生理解复杂

的医学概念，并通过模拟患者互动来提高他们的沟

通技巧
[43]。

国产大模型体系在医疗智能化应用方面取得积

极进展，其中 DeepSeek 系列模型表现尤为突出。

DeepSeek 的出现打破了大模型领域由少数科技公司

主导的局面，通过工程创新大幅降低了大模型训练

和应用的门槛，促进了尖端 AI 技术的民主化，并

通过开源推动了海量大模型应用，尤其是需要本地

化部署的医疗应用。2025 年 1 月 20 日，深度求索

发布了其第一代开源推理模型 DeepSeek-R1-Zero 和

DeepSeek-R1，因其低成本、高性能和开源优势而

备受关注
[31]。DeepSeek 的开放权重框架允许用户

进行定制与微调，加速了其在医疗领域的普及与应

用。Sandmann 等 [44] 基于 125 例多病种病例基准测

试表明，DeepSeek-R1 在诊断和治疗建议任务中的

表现至少与现有的专有大语言模型相当；Tordjman
等

[45] 发现，DeepSeek-R1 在多模态任务中同样展现

稳定性能，在临床推理能力上尤其是需要复杂推理

的场景中表现突出，显著优于 ChatGPT-o1 和 Llama 
3.1-405B。这些结果表明，DeepSeek 的诊断推理能

力已达临床可用水平，具有作为开源医疗 AI 基座

的潜力，有望通过持续微调发展成为安全可控的临

床决策支持系统。目前，DeepSeek 已在国内超过

300 多家医院中完成部署，参与临床诊断与决策支

持、科学研究、医院管理等多项任务
[46, 47]。

此外，国内生物医学大模型研究正逐步形成从

基础研究到临床转化的系统性格局，在结构预测、

单细胞建模、医学影像与临床决策等方向均取得重

要进展。在基础研究方面，深圳湾实验室开发的

RhoFold+ 模型
[48] 采用端到端深度学习策略，直接

从 RNA 序列预测三维结构，解决了 RNA 结构灵活

性带来的预测挑战；阿里与中国科学技术大学联合

发布的 GENERator 模型
[49] 专注于基因区域的训练，

在序列分类、设计与生成等任务中表现优异 ；中山

大学与华为合作研发的 CellFM 模型 [50] 基于超 1 亿

人类单细胞数据和 8 亿参数的学习框架，在细胞注

释、扰动预测和基因功能预测等任务上显著优于现

有模型；中国科学院自动化研究所开发的磐石 · 科
学基础大模型

[51] 及其衍生的 X-Cell 数字细胞大模

型致力于实现从基因序列到细胞表型的整体建模；

崖州湾国家实验室联合团队发布的丰登 · 基因科学

家智能体
[52]，通过构建“基因 - 性状 - 环境”三维

知识图谱和科研推理链数据库，成功挖掘出数十个

未报道的功能基因；中国科学院深圳先进技术研究

院的 SYMPLEX 模型
[53] 融合领域大语言模型与合

成生物学专家知识，从文献中自动挖掘功能基因元

件，并在 mRNA 疫苗加帽酶设计中获得催化效率

提升 2 倍以上的成果。

在临床转化应用方面，阿里巴巴推出的

Lingshu[54] 多模态医疗模型在多项医疗视觉问答和

报告生成任务中达到先进水平，尤其在 multimodal 
QA 任务上超越多个开源模型；腾讯联合高校开发

的 M³FM 模型
[55] 支持多语种、多领域的零样本临

床诊断与疾病报告生成，展现了跨语言和跨中心的

泛化能力；上海东方医院与中国科学院软件所联合

开发的 Med-Go 模型 ( 基于 Qwen2-72B 微调 )[56] 在
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200 亿条高质量医学数据上训练，深度融合临床指

南与真实世界病历数据，在评测中夺冠，目前已集

成至医院 HIS 系统，部署于浦东新区 15 家社区卫

生服务中心及多个省市级医院，用于辅助诊断、病

历质控和罕见病分析场景，显著提升基层医疗机构

的诊疗效率与质量一致性。同时，中医药大模型在

产学研协同推动下快速发展，截至 2025 年累计发

布 30 余款模型，融合古籍文献与现代医学知识，

构建智能辨证系统，促进中医药服务的标准化与普

及化，推动中医药从经验医学向数据驱动转型。总

体来看，国内生物医学大模型的系统性进展正逐步

实现从实验室研究到临床应用的转化，通过深度融

合行业知识、优化数据治理和强化多模态推理能力，

为构建自主可控、符合本土需求的智能临床决策支

持体系奠定了重要基础。

表 1 对 2020—2025 年生物医学领域代表性大

模型进行了总结。

2.4　多组学与多模态融合

随着序列大模型、结构大模型以及医疗大语言

模型的快速发展，生物医学研究正逐步迈向跨模态、

跨尺度的整合阶段。相比单一模态的学习任务，多

组学与多模态融合不仅能够捕捉生命系统的不同层

次信息，更有助于揭示分子 - 细胞 - 组织 - 个体之

间的动态关联，因此成为引领下一轮范式变革的关

键方向。

在数据层面，多模态基础模型预训练依赖大规

模、多样化的多组学数据集，包括批量测序、单细

胞分析、空间转录组学、染色质可及性和蛋白质组

学等。当前人类生物分子图谱计划 (HuBMAP)[68]、

人类细胞图谱 (HCA)[69]、国际人类表观基因组联盟

(IHEC)[70] 等国际性项目积累了海量多组学数据，为

模型预训练奠定了坚实基础。同时，10x Multiome、
ASAP-seq 等新兴测序技术能够在单细胞或同一样

本层面获得跨模态配对信息，为多模态数据整合提

供了关键锚点，尤其有助于贯通 DNA-RNA- 蛋白

质这一中心法则链条。

在算法层面，首先需要实现多模态数据统一的

词元化 (Tokenization)，即为不同组学与类型的原始

数据设计通用最小分析单元与编码方案，并将其映

射到共享的嵌入空间
[71]。其次，基于 Transformer

架构的多级混合注意力机制，能够同时捕捉局部模

态内关联 ( 如基因 - 基因、蛋白质 - 蛋白质 ) 与全

局跨模态依赖 ( 如 RNA- 蛋白质、顺式元件 - 转录

因子 )，从而生成兼具局部细节与全局语义的多尺

度表征。AlphaFold3[28]、scGPT[64] 等模型的成功

验证了该架构在复杂生物分子相互作用建模中的

潜力。

在学习范式上，多模态基础模型通常采用自监

督学习策略，通过模态内掩码重构、跨模态对比学

习与跨模态预测等任务，引导模型自动捕捉潜在的

生物学规律。此外，结合生物领域本体知识 ( 如
Gene Ontology[72]、Reactome[73]) 或专业语料 ( 如 PubMed
文献 ) 进行检索增强与知识约束，也有助于提升模

型的可解释性与生物学一致性。总体而言，多组学

与多模态基础模型的快速发展正在推动生命科学研

究从单一模态向跨模态、跨尺度、跨层级方向转变，

使模型能够更全面地捕捉生命系统的复杂规律，为

疾病机制研究、药物靶点发现与精准干预提供更加

坚实的技术基础。

3　变革中的技术挑战

目前生物医学大模型在多元应用场景中取得了

显著进展，并正在推动生物医学研究范式转型，但

相较于通用大模型，其在数据、算法与应用方面会

面临更严峻的挑战。

3.1　数据孤岛、异构标准与标注鸿沟

生物医学大模型依赖大规模、多中心、高质量

的数据进行预训练，而医疗数据具备高度敏感性、

异构性和跨机构孤岛化特征，现有开源医学数据集

数量和规模远低于通用人工智能领域。

当前医学术语标准 ( 如国际疾病分类 ICD、医

学系统命名法 SNOMED、逻辑观测标识符名称和

代码 LOINC)、医学影像格式 ( 如医学数字成像和

通信标准 DICOM 及其变体 ) 以及组学注释体系存

在版本差异，严重制约了多中心生物医学大模型的

协同训练与共享应用。同时，医学数据标注严重依

赖具备专业医学背景的临床医生，导致标注过程成

本高昂、工作量庞大且标注一致性存在差异，导致

高质量监督数据稀缺，进一步限制了大模型的监督

微调、指令微调及迁移学习能力的充分发挥。比如

Mohanty 等
[74] 提到，面部皮肤病数据因涉及高度

敏感的个人信息，导致医疗机构间形成数据孤岛，

致使针对红斑痤疮等疾病的计算机辅助诊断算法开

发难以获取足够规模的训练数据。针对上述问题，

近期提出的 BiomedCoOp 提示词学习框架
[75]，通过

高效利用提示词来进行少样本学习，引导 BiomedCLIP
模型针对稀缺样本进行高效训练，显著提升了生物

医学图像分类任务中的准确性与泛化性能，为缓解
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表1  2020—2025年生物医学领域代表性大模型

模型	 架构	 应用领域	 说明

BioMegatron[57]	 Transformer (Megatron-LM)	 生物医学文本挖掘	 首个面向生物医学领域的大规模预训练Transformer
2020			       模型

AlphaFold2[27]	 Evoformer	 蛋白质结构预测	 首次实现了在CASP14竞赛中对大规模蛋白质结构

2021			       的预测达到近实验精度，对结构生物学领域产生

       革命性影响，获得2024年诺贝尔化学奖

RoseTTAFold[58]	 三轨神经网络	 蛋白质结构和复合物	 在CASP14上的准确度接近AlphaFold2，计算成本

2021		      预测	     更低，且提供了开源工具

DNABERT[12]	 Transformer (BERT)	 基因组序列分析	 首个在全基因组DNA序列上预训练的BERT模型，

2021			       在启动子预测等任务上达到SOTA性能

BioGPT[59]	 Transformer (GPT)	 生物医学文本生成与 首个面向生物医学领域的大型生成式GPT模型

2022		      问答	
ProteinMPNN[60]	 信息传递神经网络(MPNN)	 蛋白质序列设计	 首个基于深度学习的通用蛋白质序列设计框架，能

2022			       直接从蛋白质骨架特征预测氨基酸序列

GatorTron[61]	 Transformer	 临床电子健康记录	 首个超大规模(89亿参数规模)临床语言模型

2022	
ESM-2[20]	 Transformer (Protein LLM)	 蛋白质结构预测	 Meta开发的蛋白质语言模型，能不依赖多序列比对

2023			       实现端到端的单序列结构预测

Med-PaLM[62]	 Transformer (Flan-PaLM)	 医学问答(专业级)	 首个通过美国医疗执照考试(USMLE)的大语言模型

2023	
ShenNong-TCM[63]	 Transformer (LLaMA + LoRA)	 中医诊疗问答	 首个针对中医药领域的中文大语言模型

2023	
scGPT[64]	 Transformer (GPT)	 单细胞组学分析	 基于大型单细胞转录测序数据集预训练得到的单细

2024			       胞基础模型

BiomedGPT[65]	 Transformer	 多模态临床诊疗支持	 首个开源、轻量级的视觉-语言基础模型，可执行多

2024			       模态任务

Evo[21]	 StripedHyena	 基因组序列建模与 通用基因组语言模型，实现了从分子到全基因组级

2024		      设计	     别的建模

AlphaFold3[28]	 Pairformer与扩散网络	 生物分子及其复合物 弥补AlphaFold2的空白，首次实现了对蛋白质与

2024		      结构预测	      DNA、RNA、小分子等多种生物分子之间复合

       物结构的高精度预测

MedGo[56]	 Transformer (Qwen2)	 中文医疗问答与临床 专为中文医学领域训练的大语言模型，在CBLUE
2024		      支持	     等中文医疗NLP评测上成绩优异

Evo2[22]	 StripedHyena2	 基因组序列建模与 迄今为止最大的生物领域AI模型，能发现跨物种基

2025		      设计	     因模式，精准鉴定致病突变，并可设计完整细菌

       基因组

Med-PaLM2[66]	 Transformer (PaLM 2)	 医学问答(临床专家级)	 首个在USMLE风格考试中达到“专家级”水平的

2025			       大模型

AMIE[67]	 Transformer (LLM)	 医学诊断对话系统	 基于LLM的诊断推理与对话系统，在实验中展现

2025			       出优于通用LLM的推理和问答表现

LucaOne[23]	 Transformer	 生物系统语言建模	 首个联合DNA、RNA、蛋白质的生物大模型，能

2025			       综合学习遗传和蛋白质组语言

LucaVirus[24]	 Transformer	 病毒理解与预测	 首个专门为病毒设计的统一多模态基础模型

2025	

标注鸿沟与数据稀缺困境提供了切实可行的解决思路。

3.2　跨尺度多模态耦合建模困难

生命系统天然具备跨尺度层级结构，从基因、

蛋白质、细胞、组织、器官到表型和行为，涉及不

同时间尺度与空间分辨率。生物医学大模型需同时

处理纳米尺度组学、微米尺度影像、宏观临床文本

与时间序列长期监测等多模态数据，存在典型的多

模态 - 多尺度耦合问题。
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主流 Transformer 及其衍生结构虽擅长统一编

码，但在动态分辨率建模与跨尺度因果路径解析方

面存在短板，限制了对复杂疾病进展过程、组学 -
影像 - 临床表型联动机制的有效表征。Warner 等 [76]

提到，生物医学领域正在经历由多模态数据驱动的

大模型变革，这些数据如何整合到统一的向量空间

中，如何转换为机器学习算法能够处理的向量形式，

如何维持不同数据模态之间的语态结构关系都是需

要面对的挑战。针对该问题，谷歌发布的 Med-
Gemini 通过构建多模态大语言模型框架，率先实现

CT/MRI 等 3D 影像数据与 X 射线等 2D 图像协同

处理，并支持端到端 CT 报告生成
[77]，为复杂多模

态建模体提供了有效的技术参考。

3.3　模型训练与应用的风险责任

生物医学 AI 系统的伦理风险高于通用领域，

涉及患者生命安全、数据主权、代际隐私与医疗责

任归属等敏感问题，未经明确知情同意使用患者健

康数据亦可能违反现行数据权益保护法规。即便经

过匿名化处理，凭借少量的时空数据点，仍可能实

现患者身份的再识别，导致严重的患者隐私泄露。

Ong 等
[78] 指出，在生物医学大模型训练过程中，

若直接使用可识别患者身份的数据而缺乏有效的数

据保护机制，模型存在潜在的敏感信息记忆与泄露

风险。

在当前生物医学人工智能领域，常用的数据隐

私技术如联邦学习与合成数据生成，有效解决了医

疗数据孤岛与隐私泄露风险之间的矛盾，实现了在

保护患者隐私的前提下跨机构协同建模。这些技术

显著提升了模型训练的合规性与数据安全性，推动

了 AI 在医疗场景中的落地应用。如联邦学习允许

多个机构在不共享原始数据的情况下协同训练模

型，通过在本地设备或服务器上训练模型，然后将

更新后的模型参数发送到中央服务器进行聚合，从

而能够有效地保护本地医疗数据的隐私性，因此适

合用于生物医学 AI 模型训练。Stripelis 等 [79] 提出

了一种名为 MetisFL 的可扩展、安全且私密的联邦

学习架构，使得生物医学机构不用共享患者敏感数

据 ( 如脑 MRI 影像 )，仅加密传输模型参数就能联

合训练 AI 模型，还能够依靠加密抵御外部攻击，

依靠梯度噪声抵御内部攻击。另外在医学 AI 训练，

尤其是在医学影像领域中，合成数据是一种常用的

数据生成方法，通过生成与真实数据相似的数据

集作为模型的训练集，将图像特征和患者数据进

行了有效隔离，无需访问敏感信息。Dorjsembe 等 [80]

提出了首个用于 3D 语义脑部 MRI 合成的扩散模型

Med-DDPM，该模型能够生成稳定、多样、高保真

度的脑部 MRI 图像，大幅减少模型训练对于真实

数据的依赖。

4　生物医学大模型发展前瞻

生物医学大模型的未来发展需要应对复杂的数

据问题，在技术方面将深度融合通用智能体的核心

能力——多模态理解、自主进化与人机协同；未来

5 到 10 年，生物医学大模型有望持续迭代，实现从

“辅助工具”到“智能协作者”的变革发展 ( 图 2)。
4.1　数据生态与协作模式：打破孤岛，构建全球知

识网络

数据壁垒和标注稀缺问题将随着联邦学习、隐

图2  生物医学大模型发展对比
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私计算与合成数据技术的成熟得到缓解。未来的生

物医学大模型训练可能依托于去中心化的“医疗数

据联盟”，通过区块链技术实现跨机构数据共享与

权益分配，同时确保患者隐私，比如允许模型在加

密数据上训练而无需原始数据迁移。此外，自监督

学习与主动学习的结合将减少对人工标注的依赖：

模型可通过分析未标注的电子病历、医学影像和科

研文献，自动挖掘潜在关联并生成高质量伪标签。

合成生物学与器官芯片技术的进步还将提供仿真生

物数据，弥补真实数据在罕见病或长周期研究中的

不足。

4.2　技术融合与架构创新：迈向通用生物医学智能

未来的生物医学大模型将突破当前单一任务或

模态的局限，向多模态耦合、跨尺度推理的通用生

物医学智能体演进。一方面，模型架构将更注重生

物系统的层级特性，通过引入混合专家 (mixture of 
experts, MoE) 架构、扩散模型与物理建模的混合框

架，实现对基因调控网络、蛋白质互作动态等跨尺

度生物过程的统一表征。例如，结合 AlphaFold3 的

分子扩散生成能力与 Evo2 的基因组设计能力，未

来模型或能直接模拟“基因突变 - 蛋白质构象变化 -
细胞功能异常”的全链条机制，为复杂机制研究提

供端到端解决方案。另一方面，多模态融合技术的

进步将推动文本、影像、组学与实时传感器数据的

深度整合。类似 Med-Gemini[77] 的框架可能进一步

扩展至单细胞测序、穿戴设备数据甚至手术机器人

实时反馈，形成“感知 - 分析 - 决策 - 执行”的闭

环医疗系统。

4.3　长期愿景：生物医学的“AlphaFold时刻”

在基础研究领域，生物医学大模型将加速 “干

湿结合”的实验范式。例如，通过预测蛋白质 - 药
物结合位点并自动生成实验方案，模型可指导机器

人实验室如 Strateos[81] 或 Emerald[82] 完成高通量筛

选，将传统数月的研究压缩至数天。在药物研发中，

大模型有望覆盖从靶点发现到临床试验设计的全流

程，生成具有特定药理性质的分子结构，如辉瑞已

利用 AI 设计 COVID-19 药物 Paxlovid 的候选分子

从而大幅降低研发成本。

在临床层面，生物医学大模型将推动个性化医

疗的普及。通过整合基因组、代谢组与生活方式数

据，模型可为患者生成动态健康风险图谱，并实时

优化治疗方案。例如，未来的肿瘤诊疗可能由大模

型根据患者突变谱自动匹配靶向药物组合，并同步

调整放疗计划。此外，结合增强现实 (AR) 与手术

机器人，模型还能在术中提供实时解剖导航与风险

预警。

类似 AlphaFold 引发结构生物学革命，未来模

型可能通过模拟细胞代谢、免疫响应等复杂系统，

发现人类尚未认知的生物规律。更进一步，大模型

与自动化实验平台如 AI-driven lab 深度融合，科学

发现可能进入“自我驱动”时代——模型生成假设

→机器人验证→反馈优化模型，形成“AI- 实验”

闭环。

5　结论

生物医学大模型作为人工智能与生物医学深度

融合的产物，正以极快的速度融入各类生物医学应

用场景，引发智能化范式变革，其未来发展不仅限

于简单的技术迭代，更有机会促成生物医学认知方

法论的重构。随着生物医学大模型的持续发展，其

有望成为“生物医学领域的通用智能体”，实现从“辅

助工具”到“智能协作者”的转型，并在基础研究、

工业运用、临床诊疗等领域引发更加深刻的变革，

而生物医学的边界也将被重新定义。
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