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The ABA role covered by soil: control of root system architecture formation
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Abstract: Root is one of the agronomical important aspects of plant. The relative simplicity of the growth
patterning and the sensitivity to environmental conditions make the root system architecture a useful model for
the study of plant developmental plasticity in particular. Abscisic acid (ABA) has a central role in this develop-
mental plasticity. The role of ABA in the possible signal transduction pathways for modulating root growth,
lateral root and root hair development and root system architecture formation are analyzed, future research need
to be studied are also proposed. Elucidation of the molecular mechanism will be helpful for understanding the
rule controlling root system development, and will be very important for agricultural production.
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