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Differentiation of embryonic stem cells and induced pluripotent stem cells

into cardiomyocytes: progresses and perspectives
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Abstract: Pluripotent embryonic stem cells (ESCs) are capable of prolonged symmetrical self-renewal and possess
the unique property to differentiate into derivatives of all three primary germ layers, including specialized
cardiomyocytes with all cell types of the heart, such as atrial-like, ventricular—like, sinus nodal-like, and Purkinje—
like cells. Recently generated ESC-like pluripotent cells by reprogramming somatic cells, named induced pluripo—
tent stem cells (iPSCs), open a new gate for cell transplantation—based regenerative medicine. Spontaneous
differentiation of ESCs and iPSCs into cardiomyocytes is however limited. To elucidate the regulatory mecha-
nisms and effectively differentiate these pluripotent cells into specific cardiomyocytes are crucial to obtain
fundamental knowledge in cardiogenesis, screen drugs and promote the usage of these cells in replacement
therapy. This review summarizes the current state of differentiation of cardiomyocytes from mouse and human
ESCs and their regulatory factors. The in vitro differentiation potential of iPSCs into cardiomyocytes is also
described. Finally, the steps required to fully harness the potential of this in vitro differentiation system and the
application potential are discussed.
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