多组学大数据共享平台研究进展

凌鋆超1 , 曹瑞芳1 , 李亦学1,2 , 张国庆1,*
1中国科学院上海营养与健康研究所,生物医学大数据中心,上海 200032 2广州实验室,广州 510005

摘 要:

高通量检测技术的快速发展催生了海量的多组学数据,数据驱动型研究规模正逐步超越传统假设型研究。不同层次组学数据的组合,通过对系统生物学和疾病发展更深入和全面的解读,持续改变生物医学研究方式。同时,多组学数据庞大的数据规模、异质的数据特性,以及强烈的数据共享内源性需求,都推动组学数据向规模化、平台化、标准化共享的方向发展。该文首先介绍了代表性的多组学平台和各组学数据的特点,接着以多维组学数据百科全书NODE 为例,从多组学数据融合和多组学数据安全共享两方面对相应的方法和技术进行了细致的阐述,并展望了多组学数据平台未来的发展方向。

通讯作者:张国庆 , Email:gqzhang@sinh.ac.cn

Advances in multi-omics big data sharing platform research
LING Yun-Chao1 , CAO Rui-Fang1 , LI Yi-Xue1,2 , ZHANG Guo-Qing1,*
1Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China 2Guangzhou Laboratory, Guangzhou 510005, China

Abstract:

High-throughput sequencing technologies have spurred a data-driven shift in biomedical research, producing vast quantities of multi-omics data that offer a comprehensive understanding of biological systems. The sheer volume and diversity of this data, along with the need for data sharing, call for standardized, scalable omics platforms. In this review, we first highlight key multi-omics platforms and their distinct features. Then, we explore methods for integrating and securely sharing multi-omics data using National Omics Data Encyclopedia (NODE), a multi-omics data repository. Lastly, we delve into the future prospects of multi-omics platforms.

Communication Author:ZHANG Guo-Qing , Email:gqzhang@sinh.ac.cn

Back to top