合成生物技术在新材料发展中的应用

安柏霖 , 王艳怡 , 钟 超*
中国科学院深圳先进技术研究院,深圳合成生物学研究院,材料合成 生物学研究中心,定量工程生物学重点实验室,深圳 518000

摘 要:

合成生物学是一门运用基因操作工具调节和改造生命行为或再创生命形式的工程学科。近年来,合成生物学的发展为新材料的发现、设计和生产等多方面带来了新的机遇。例如,优化工业微生物发酵产物的代谢合成途径,不仅可以提高材料的性能,而且可以大规模地生产目标产品;基于合成生物学的模块设计原理对生物功能分子理性组合,所开发的材料在性能与应用方面有望突破天然材料的局限;此外,整合人工设计的基因线路来调节生物体内材料单体分子的表达、分泌,以及在细胞外的自组装,促进了具备动态和可控特征的“活”材料的发展。尽管近年来合成生物技术在新材料开发方面取得重要突破,目前材料合成生物学领域仍然存在诸多困难与挑战。例如,由微生物发酵制作的材料在性能上很难与天然材料相媲美,而现有的工程“活”材料也很难实现准确与快速的环境响应。该文将从合成生物技术如何推进天然生物组分的异源发酵、仿生功能材料的模块化设计和设计制造功能“活”材料三个方面的进展进行概述,并在这些进展的基础上,进一步探讨该新兴领域面临的挑战以及可能的解决方案。

通讯作者:钟 超 , Email:chao.zhong@siat.ac.cn

Design and production of new materials by synthetic biology
AN Bo-Lin , WANG Yan-Yi , ZHONG Chao*
Center for Materials Synthetic Biology, Cas Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

Abstract:

Synthetic biology is an engineering discipline that employs genetic tools to regulate and modify the behaviors of living organisms or recreate new forms of life. The recent advances in synthetic biology have opened up new opportunities for the discovery, design, and fabrication of new materials. For example, optimizing the metabolic pathways of fermentation products in industrial microorganisms can both improve material performance and enable the large-scale production of target products. Rational combination of biological molecules or domains using modular genetic design strategies can lead to new materials that promise to outperform their natural counterparts in both properties and application scopes. Furthermore, the integration of artificially designed genetic circuits to regulate the expression and secretion of functional molecules in living organisms and their extracellular self-assembly promotes the development of "living" materials with dynamic and programmable characteristics. Although significant progress has been achieved in developing new materials in recent years, the field still faces several major challenges. For example, materials produced by microbial fermentation rarely match the performance of their natural counterparts, and it remains challenging to engineer "living" materials with precisely controlled and rapid environmental responses. This review provides an overview of how synthetic biology advances the heterologous fermentation of natural ingredients, the modular design of biomimetic materials, and the engineering of functional "living" materials. Based on these advances, we will further discuss the remaining challenges and
potential solutions for this emerging field.

Communication Author:ZHONG Chao , Email:chao.zhong@siat.ac.cn

Back to top