(2 西北农林科技大学农学院,杨凌 712100)
(3 南京林业大学林学院/南方现代林业协同创新中心,南京 210037)
(2 College of Agronomy, Northwest A & F University, Yangling 712100, China)
(3 Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China)
植物的光合作用效率不仅受到叶绿体基质内核酮糖-1, 5-二磷酸羧化酶/加氧酶(Rubisco)固定能力的影响,还受限于CO2对光合机构的供应。CO2供应效率取决于其吸收的CO2从气孔进入后,传输到Rubisco羧化位点的能力。CO2从气孔下腔传输到羧化位点的效率称为叶肉导度(gm),这是一个复杂而漫长的传输过程,CO2需要穿过叶片内不同介质,如细胞间隙(即气相导度,gias)和一系列液相组分(即液相导度,gliq),最终到达基质中的Rubisco羧化位点。由于气相限制非常小,整个气相阻力比液相路径的总阻力小两个数量级[1],因此一般认为CO2在叶片内部的扩散主要受到gliq限制。gliq由细胞壁(gcw)、质膜(gpm)、细胞质(gcyt)、叶绿体膜(genv)和叶绿体基质(gst)多种导度以串联的方式组成;同时还受到生物膜上水通道蛋白(AQPs)和叶绿体基质中碳酸酐酶(CA)的主动调节。由于gm的改善可以提高光合速率5%~10%[2],许多研究致力于探索gm,尤其是gliq的调控因素,并试图通过生物技术手段改善gliq以增强光合作用[3-4]。目前,随着同位素测定和荧光测定技术的发展,已建立多种估算gm的方法,如叶绿素荧光和气体交换参数结合测定法、碳同位素测定法、氧同位素测定法、CO2响应曲线拟合法以及叶片解剖结构法等。但鉴于每种方法自身的局限性,通常采用前两种方法进行测定,而其他方法则只用于辅助验证,具体测定方法和注意事项在其他综述中有详细介绍[5-7]。本文主要概述引起gm变化的生物物理因素和生物化学因素,前者是指细胞壁厚度和组分以及叶绿体面向细胞间隙的面积(Sc),后者是指调节CO2跨膜运输的AQPs和CA的表达量及活性,并讨论这些因素在植物进化和驯化过程中的变化。此外,鉴于植物的结构和生化功能易受环境影响,因此本文也总结了当前环境变化(如水分、温度、光照和养分)引起的gm变异,并进行了探讨。
1 引起gm变化的主要生物物理和生物化学因素 1.1 生物物理因素细胞壁是CO2从细胞间隙进入叶肉细胞的第一道障碍,其对gm的影响已在众多研究中得到证实[8-11]。细胞壁对gm的影响主要取决于其孔隙度和曲折度[3, 12]。由于这些参数难以直接测量,研究者通常通过分析细胞壁厚度和组分来推断其与gm之间的关系[12-15]。细胞壁厚度(Tcw)这一二维指标已在数百个物种中得到量化,研究发现不同植物类群的Tcw与gm呈现出显著负相关性[16]。系统发育分析显示,细胞壁变薄与gm提高往往同步发生[17]。虽然多项研究证实Tcw在gm变化中的重要作用,但在针叶树种的比较中发现,种间水平上gm的变化与Tcw关联并不显著[12]。从二维视角看,Tcw增加意味着CO2扩散路径变长,但气体传输的实际扩散路径取决于细胞壁成分的三维排列方式[14, 18-19]。细胞壁主要由纤维素、半纤维素和果胶构成。然而,这些组分与gm之间的关系并未明确,可能是因为组分变化影响了细胞壁内部气体传输路径,而这种影响并非通过简单的线性关系就能反映出来[20]。在半纤维素缺失突变体研究中发现,Tcw与gm并无直接联系。但半纤维素的缺失改变了内部结构,导致有效气体传输路径减少,进而影响了gm [21]。在xxt1 xxt2半纤维素突变体中也观察到,其纤维素排列较野生型更加一致且紧密,这种致密排列不利于气体传输[22-23]。尽管一些研究结果表明纤维素或木质素含量与gm存在一定关系[24-25],但多项研究表明,细胞壁组分中的果胶因其既能形成孔隙又能形成凝胶,在调控gm方面发挥重要作用[21, 26-27]。果胶的增加会降低孔隙度,从而减缓CO2通过细胞壁的传输速率,对干旱条件下麦类作物的研究表明果胶含量与gm呈负相关[15]。与此同时,也有研究表明果胶并不能单独调控gm,果胶与其他细胞壁组分之间的相对比例才是关键[12]。在葡萄树、向日葵、烟草或某些针叶树种的环境胁迫研究中,发现果胶和gm之间可能不存在显著关系[12, 21, 24-25]。这表明果胶对gm的调控方式并不统一。针对这一现象,有研究认为可能是由于果胶的块状和非块状甲酯化导致的,前者更容易形成凝胶阻碍CO2传输,后者则易于在细胞壁上形成孔隙;换言之,果胶理化特性的不同导致其调控gm的机制也不同[14, 28-29]。细胞壁对gm的调控是一个复杂的过程,不仅受细胞壁结构影响,还涉及多种生化因素。值得注意的是,pH值、温度以及与其他离子的相互作用也可能影响果胶等细胞壁组分的性质,进而影响气体穿过细胞壁的速率[8]。
单位面积内叶绿体面向细胞间隙的面积(Sc)是另一个主要的结构限制因素。通常,Sc与gm呈正相关,较大的Sc有助于增加CO2的平行扩散路径[10, 30-32]。高Sc意味着更多的叶绿体暴露于CO2,这可大大提高羧化位点的CO2浓度。但Sc在物种间存在较大差异,同时也易随环境发生变化[32-37]。与结构特征中的Tcw相比,Sc对环境的响应更为迅速,因为叶绿体可以在细胞质内移动,而细胞壁厚度则很难快速响应环境变化[38-39]。Tholen等[39]发现叶绿体的短期避光运动能够降低Sc,进而通过减小gm限制光合作用,并通过缺乏叶绿体运动的光敏色素突变体进一步证实了叶绿体运动对gm的影响。
除Sc外,其他特征也可能影响gm,如细胞质。细胞质对CO2传输的阻力相对较小,通常认为低于液相传输阻力的10%[10, 40-41]。因为CO2穿过细胞膜后需要跨越细胞质才能到达叶绿体膜,为缩短CO2的扩散距离,叶绿体往往紧贴细胞膜。但也有研究表明缺钾植物叶绿体与质膜分离,扩大细胞质阻力,从而导致gm降低[34]。在棉花驯化过程中,叶绿体与质膜分离抵消了细胞壁变薄带来的CO2扩散优势,因此gm未发生显著变化[42]。
1.2 生物化学特性CO2扩散至羧化位点需要跨越细胞膜和叶绿体膜,它们均为磷脂双分子层,含有多种蛋白质,可以在一边或两边进行整合或延伸——这有助于增加膜渗透性通道,但也严重阻碍CO2扩散,因此需要转运蛋白的参与[13, 43]。一些研究表明细胞膜上的AQPs可以促进CO2跨膜运输[43-46],在gm中发挥重要作用。Uehlein等[45]通过改变烟草NtAQP1基因表达,为体内CO2运输的蛋白质介导途径提供了证据;进一步研究发现NtAQP1位于叶绿体内膜,降低NtAQP1的表达可使叶绿体膜CO2通透性减少89%,gm降低20%,但不影响质膜的CO2渗透性。该研究通过对比分析发现,质膜对CO2的渗透性是叶绿体膜的5倍[47],表明质膜和叶绿体膜的内外膜对CO2的通透性可能存在差异。现在越来越多直接或间接证据支持AQPs在促进CO2扩散中的作用[48-50]。然而,最近一项研究通过4种不同方法敲除拟南芥的AtPIP1; 2、AtPIP1; 3、AtPIP2; 6后,发现其gm和光合速率均无显著变化,这可能与AQPs家族内的功能冗余、生长条件及其他生理功能的变化有关[51]。Clarke等[52]通过在烟草中异位表达AtPIP1; 2或AtPIP1; 4也发现,简单改变AQPs的表达不会导致gm或光合速率的变化,他们指出植物生长和环境条件可能在AQPs改变gm中发挥重要作用,但需要通过进一步研究来更好地了解AQPs的功能。此外,AQPs还可以作为信号分子响应不同的环境刺激,调节气孔动力学[53],以响应生长条件变化和非生物胁迫。
CA作为一种高效的催化剂,能够促进CO2与碳酸氢根离子(HCO3−)之间的相互转化,有利于CO2在叶绿体基质中的扩散。在光合组织中,CA通过维持细胞质和叶绿体内CO2与HCO3−的平衡来加强gm,从而促进Rubisco对CO2的固定[54-55]。CA在叶绿体基质和细胞质中含量丰富,并与各种膜的组分有关。虽然CA被认为是光合过程中CO2传输和固定的重要组成部分,但其对gm的影响仍存在争议:有研究认为叶绿体基质中CA的缺失会影响烟草的发育,但不影响光合作用[56];也有研究表明即使叶绿体CA活性降低98%也不会显著降低其CO2同化速率[57]。这可能与叶片中CA的类型复杂性、细胞器中的丰度水平、多种代谢途径中的潜在作用以及活性有关。相反,移除细胞质中的CA使gm下降44%[58]。有研究表明CA的活性具有物种依赖性,在细胞壁对CO2扩散阻力较大的物种如硬叶植物中,CA对gm具有明显的调节作用[59]。在C4植物中,叶绿体中的CA协助碳浓缩机制为Rubisco提供较高浓度的CO2,因此CA的活性对其光合作用至关重要。然而,在C3植物中CA的作用尚不确定,因为通过使用抑制剂、突变体或水分胁迫改变CA的表达或活性未得到肯定结果。因此,CA如何影响gm仍然是一个值得探讨的问题。
2 进化和驯化过程中gm的变异 2.1 进化过程中gm的变异植物在系统发育过程中经历了从苔藓植物、拟蕨类植物、蕨类植物、裸子植物到被子植物的进化。在这一过程中,光合速率和gm呈显著同步增加趋势,苔藓和拟蕨类植物具有陆生植物中最高的gm限制,随着气孔发育的完善,在蕨类植物和裸子植物中光合开始受到gm和gs共同限制,最终在被子植物中,光合作用受到gm、gs以及生化因素的综合限制[16-17]。进一步分析发现在系统发育中光合作用的改善主要与CO2扩散能力的提高有关,而与生化能力的关系较弱[16]。Flexas和Carriquí[60]通过叶绿素荧光和气体交换参数结合测定与解剖结构模型两种独立的方法估测了gm,认为其在很大程度上取决于解剖结构特征Tcw和Sc。苔藓类植物具有最小gm的结构特征,即最小的Sc和最大的Tcw;而被子植物则表现出非常大的Sc和较低的Tcw,同时也表现出较高的gm[16-17]。Sc随着进化表现出增加趋势,而Tcw则表现出下降趋势,这共同导致了gm增加[17]。Sc和Tcw在进化中也存在显著负相关性,这表明其在叶片发育过程中可能存在协调性,被认为是未来优化研究以实现最大的gm的重要方向[17, 60]。Huang等[16]进一步对Sc和Tcw的增幅变异情况进行分析,发现系统发育过程中gm的提高主要受到Tcw而不是Sc制约,这表明通过调节Tcw进一步改善植物的光合作用更易实现。
2.2 驯化过程中gm的变异在作物驯化过程中,叶片生理和结构特征通常会因人类选择、环境条件和农田管理方式而发生变化[42, 61-64],厘清驯化对gm的影响有助于剖析叶片光合变异的复杂机制以及明确产量提升的有效途径[65]。然而,驯化过程中gm变异比较复杂。例如,Nadal和Flexas[66]观察到木本作物(包括落叶植物和常绿植物)与其野生祖先具有相似gm;Eriksen等[67]发现栽培莴苣叶片的gm低于野生莴苣;而小麦现代品种的gm高于地方品种[68];同样,在栽培种水稻中也发现了更高的gm [69-70]。棉花栽培种比野生型的光合速率更高,但不论使用气体交换和叶绿素荧光法估算的gm还是以解剖学特征建模计算的gm,野生型和栽培种之间均无差异[42]。
驯化过程中gm的改变主要归因于叶肉细胞解剖结构的变化,包括Tcw、Sc、单位面积叶肉细胞面向细胞间隙的表面积(Sm)和细胞间隙占横截面的比例[6, 8, 10, 40, 71-72],这些结构特征的变化与叶肉细胞的分布和形态变化密切相关[26, 73]。野生稻和栽培稻gm的差异与Sm和Tcw的变异有关,但与Sc无关[74]。Scafaro等[75]发现,与野生稻相比,栽培稻的gm较大与其较薄的Tcw有关,这与进化过程中的变化相一致[76]。棉花驯化过程中Tcw减小导致gcw增加,但细胞质距离增加导致gcyt减小,两者相互抵消使gm保持不变[42]。因此,在未来育种中打破gcw和gcyt的相互抵消关系是增加gm和光合能力从而提高产量的关键所在。
3 不同环境条件下gm的变化植物能够通过调节gm来响应水分、温度、光照以及养分等环境因素的变化。通常来说,短期响应主要通过AQPs和CA引起CO2渗透性变化实现,而结构性变化则需要更长的时间来发生[13, 77-79]。
3.1 干旱胁迫条件下gm的变化干旱是影响植物光合作用的重要环境因素之一,多项研究表明干旱胁迫会降低植物gm[37, 80-83],这取决于胁迫时间和程度。Flexas等[84]观察到在干旱胁迫初期,光合作用主要受到gs限制,在胁迫适应过程中转变为受gs和gm的共同限制。Zou等[37]发现随着干旱胁迫的持续和加剧,光合速率下降最初由gs限制主导,随后转变为受gs和gm共同限制,最后演变为包含生化因素的共同降低。干旱胁迫下gm的降低主要归因于Sc的减小、细胞壁厚度和组分的变化、AQPs和CA活性及含量的改变。干旱胁迫会引起叶绿体的萎缩、数量的减少和排列方式的改变,从而导致Sc减小[39, 81, 85-86]。在干旱条件下,植物可能通过叶绿体运动减少沿膜排列,以避免因光能过剩引起光合机构损伤[39]。研究发现,干旱胁迫对细胞壁的影响存在明显物种依赖性,如欧洲山杨gm降低源于Sc减小和Tcw增厚[87],而在棉花中Tcw无明显增加[81]。水分对细胞壁的影响,不仅表现在厚度上,还可能通过改变细胞壁孔隙度及细胞壁组分中果胶、纤维素、半纤维素含量及其比例等物理化学特性,进而影响CO2扩散[14, 21, 24, 88]。然而,叶肉结构特征并不能完全解释gm的变化[89],生化因素如CA和AQPs活性也发挥着重要作用[85]。干旱胁迫通常会引起CA表达量下调,以应对由较低gs和gm引起的胞间CO2浓度降低。如Han等[81]发现,在长期干旱条件下,棉花的gm降低可能受到CA基因调控。但在橄榄树短期水分胁迫和恢复研究中发现,CA的表达对gm影响较弱[90],也有研究表明CA活性极度降低不会严重限制光合作用[56]。因此,关于CA对gm的调节作用目前存在较大争议,还需进一步验证。Perez-Martin等[90]在橄榄树短期干旱实验中强调了AQPs在gm中的主要调节作用,植物通过下调AQPs表达降低膜的水渗透性并限制细胞水损失,但也影响了CO2跨膜运输,从而降低了gm。在桑树干旱胁迫研究中发现,AQPs转录丰度更高的桑树品种具有更强的光合能力,gm受到干旱的影响更小[91]。干旱胁迫也可降低烟草的AQPs活性,从而降低其gm[92]。与此相反,一项研究发现拟南芥AQPs敲除株系与对照的gm无显著差异[51]。此外,Han等[81]的研究也发现,尽管干旱胁迫导致海岛棉中GhPIP1.1基因表达发生变化,但并未对gm造成影响。Zou等[37]发现棉花gm降低的主要因素因干旱持续时间和干旱程度不同而异。干旱首先影响叶绿体基质中CA活性以及质膜或叶绿体膜上水孔蛋白相关基因表达,而叶片结构变化则是长期效应[93]。综上,干旱胁迫下gm变化受植物种类、胁迫时间和胁迫程度等诸多因素影响,其响应机制较为复杂,目前尚无明确定论。
3.2 gm对温度变化的响应研究表明,gm能够迅速响应温度变化。Flexas等[94]观察到诱导温度改变会使甘蓝gm在20~30 min内发生显著变化。然而,gm对温度的响应往往因物种而异,可能随着温度升高呈现出增加、不敏感或先增加后减少的变化趋势[13, 70, 95-97]。Bernacchi等[98]发现,在10~40 ℃的温度范围内,gm随温度指数增长,在35~37 ℃时达到峰值,随后逐渐下降。通过分析gm变化系数,推测其对温度的响应可能涉及酶促反应,因为CA和AQPs均为蛋白质,其活性易受温度影响,从而影响CO2传输。Warren [99]发现橡树叶片的gm在20~35 ℃之间相对恒定,表明gm不可能仅由简单的蛋白质促进过程决定,而可能是由不同温度敏感性的多个过程共同决定的复杂温度响应。Evans[13]总结发现,C3植物gm对温度的响应存在显著差异,而C4植物(狗尾草除外)gm对温度的响应非常强烈,推测可能是质膜渗透性在温度响应中发挥了重要作用。von Caemmerer和Evans[97]比较了多种植物gm的温度依赖性,发现烟草、棉花、大豆和桉树的gm在15~ 40 ℃之间增加了两至三倍,而木麻黄和小麦的变化较小。为了解释不同物种间的温度响应差异,他们提出一种双组分模型,将gm分为液相和膜相两部分,并考虑了膜通透性的温度依赖性和液相的有效路径长度。通过模拟发现,不同物种gm的温度响应差异主要由膜活化性渗透能和液相扩散路径调控。Li等[100]的研究发现,叶片水势在gm对温度的响应中起着重要作用,这可能与膜透性、叶绿体表面积和细胞壁特性等因素有关。该研究团队进一步强调了叶片解剖结构是gm对温度响应种间变异的主要决定因素[95]。目前,关于gm液相和膜相组分对温度响应的生理机制尚不明确,缺乏直接证据。
3.3 不同光照强度对gm的影响植物会改变自身形态和生化特征以适应生长的光环境,长期生长在高光照强度下的植物,其叶片通常具有较高的gm、光合能力和与之匹配的结构特征[101-105]。植物往往具有较厚的叶片和栅栏组织厚度[103, 106-108],高光照强度有助于光线在叶片内穿透,提高光合组织光能利用效率,从而促进单位面积光合速率和gm[109]。在高光照条件下生长的叶片,常通过增加栅栏细胞层数和扩大叶肉细胞体积来增加叶片厚度,进而提高Sc和Sm[3, 87, 103, 105, 107, 110-111]。也有研究指出,叶绿体对光环境的适应性较强,当长期生长在荫蔽环境的植物被转移到高光环境时,Sc会增加,但Sm的增加并不明显[108]。关于Tcw对光照变化响应的研究结果存在很大差异,可能随着光照强度的增加而增加[112],或保持不变[3, 107, 112-113],或降低[103, 113],但目前的机理尚不清楚。
在自然环境中生长的植物常面临剧烈的光强波动(从毫秒到数小时),研究发现gm对短期光照强度有不同响应。例如,烟草、3种桉树和7种班克木属植物的gm在短期光照强度增加时有所提高[94, 114-117]。而在小麦、烟草和9种杜鹃花属植物中,却发现gm对光照强度无响应[118-120]。Yamori等[119]认为gm会随生长光照强度的增加而增加,但不随测量光照强度变化。有学者表示,由于在研究中未考虑到光呼吸等因素,部分gm的快速响应结果可能是测定和计算错误造成的假象[121]。但Douthe等[114]认为,gm对光照变化的响应不太可能是计算误差,虽然使用不同的模型参数值会改变gm的绝对值,但不会影响对其辐照度的相对响应。目前的研究认为,gm对短期光照强度的快速响应主要源于CO2扩散特性的生化成分变化,如CA和AQPs[122]。
3.4 不同营养条件下gm的变化养分亏缺会通过影响叶片形态结构和细胞水平等一系列特征,对植物生长造成阻碍,但不同营养元素的缺失对植物的影响并不相同[123]。高氮环境一方面通过增加Sc来增加平行扩散路径,另一方面降低Tcw缩短扩散路径[36, 124-125]。李勇等[78]认为高氮环境下Sc增加主要由叶绿体增大造成。除了观察到解剖性状协同变化外,其他过程如AQPs基因表达也受到营养条件的影响,例如氮营养水平可以调节AQPs基因的表达和含量[126-128]。钾供应情况对高等植物的光合能力有显著影响,Jin等[129]发现gm与山核桃幼苗的钾供应密切相关,推测gm的增加可能是供应钾引起的生化修饰和(或)叶片结构适应的结果。Hu等[130]证明钾亏缺会引起Sm和Sc减小,阻碍CO2扩散,从而降低光合速率。进一步研究发现,钾营养水平有效调节叶肉细胞形态和排列,有利于形成疏松的叶肉细胞和较小的海绵组织细胞,增加叶肉孔隙率以提高Sm和Sc,从而增加gm[131]。这表明在钾亏缺条件下,Sc对gm有重要调控作用。此外,有研究表明钾可以通过调节碳代谢来调控甘蓝型油菜叶片CO2的运输和同化[132]。目前关于磷对gm影响的研究较少,一些研究表明缺磷会降低叶片gm[133-134],也有研究指出低磷胁迫会严重破坏大豆叶肉细胞和叶绿体,减少叶绿体数量[135]。但对于低磷胁迫下gm变化是否与叶片结构有关尚不清楚。关于营养元素如何通过结构调控和生化调控机制影响gm还需深入研究。
4 总结及展望gm作为光合作用的重要限制因素之一,因其内在复杂性,其生理调控机制尚未被完全阐明。本文主要在细胞结构水平上总结了决定其变化的主要内部因素:Tcw和化学组成、叶绿体运动引起的Sc变化、AQPs介导的CO2跨膜运输和CA介导的CO2转运调控。这一系列内部影响因素在植物驯化过程中,以及在不同水分、温度、光照和营养环境条件下的响应性明显不同,同时也因物种和环境胁迫而产生不同响应机制。未来需要深入探究植物gm与细胞结构和生化特性以及环境适应性的关系,为提高植物内部CO2扩散调控提供理论指导。
[1] |
Márquez DA, Stuart-Williams H, Cernusak LA, et al. Assessing the CO2 concentration at the surface of photosynthetic mesophyll cells. New Phytol, 2023, 238: 1446-60. DOI:10.1111/nph.18784 |
[2] |
Zhu XG, Long SP, Ort DR. Improving photosynthetic efficiency for greater yield. Annu Rev Plant Biol, 2010, 61: 235-61. DOI:10.1146/annurev-arplant-042809-112206 |
[3] |
Ellsworth PV, Ellsworth PZ, Koteyeva NK, et al. Cell wall properties in Oryza sativa influence mesophyll CO2 conductance. New Phytol, 2018, 219: 66-76. DOI:10.1111/nph.15173 |
[4] |
Zait Y, Ferrero‐Serrano Á, Assmann SM. The α subunit of the heterotrimeric G protein regulates mesophyll CO2 conductance and drought tolerance in rice. New Phytol, 2021, 232: 2324-38. DOI:10.1111/nph.17730 |
[5] |
Cousins AB, Mullendore DL, Sonawane BV. Recent developments in mesophyll conductance in C3, C4, and crassulacean acid metabolism plants. Plant J, 2020, 101: 816-30. DOI:10.1111/tpj.14664 |
[6] |
Flexas J, Niinemets Ü, Gallé A, et al. Diffusional conductances to CO2 as a target for increasing photosynthesis and photosynthetic water-use efficiency. Photosynth Res, 2013, 117: 45-59. DOI:10.1007/s11120-013-9844-z |
[7] |
巩晓颖, 马薇婷, 余咏枝, 等. 植物叶肉导度的测定方法及其研究进展. 应用生态学报, 2020, 31: 1882-8. |
[8] |
Evans JR, Kaldenhoff R, Genty B, et al. Resistances along the CO2 diffusion pathway inside leaves. J Exp Bot, 2009, 60: 2235-48. DOI:10.1093/jxb/erp117 |
[9] |
Gago J, Daloso DM, Carriquí M, et al. Mesophyll conductance: the leaf corridors for photosynthesis. Biocheml Soc Trans, 2020, 48: 429-39. DOI:10.1042/BST20190312 |
[10] |
Tomás M, Flexas J, Copolovici L, et al. Importance of leaf anatomy in determining mesophyll diffusion conductance to CO2 across species: quantitative limitations and scaling up by models. J Exp Bot, 2013, 64: 2269-81. DOI:10.1093/jxb/ert086 |
[11] |
Veromann-Jürgenson LL, Tosens T, Laanisto L, et al. Extremely thick cell walls and low mesophyll conductance: welcome to the world of ancient living!. J Exp Bot, 2017, 68: 1639-53. DOI:10.1093/jxb/erx045 |
[12] |
Carriquí M, Nadal M, Clemente‐Moreno MJ, et al. Cell wall composition strongly influences mesophyll conductance in gymnosperms. Plant J, 2020, 103: 1372-85. DOI:10.1111/tpj.14806 |
[13] |
Evans JR. Mesophyll conductance: walls, membranes and spatial complexity. New Phytol, 2021, 229: 1864-76. DOI:10.1111/nph.16968 |
[14] |
Flexas J, Clemente-Moreno MJ, Bota J, et al. Cell wall thickness and composition are involved in photosynthetic limitation. J Exp Bot, 2021, 72: 3971-86. DOI:10.1093/jxb/erab144 |
[15] |
Roig-Oliver M, Fullana-Pericàs M, Bota J, et al. Adjustments in photosynthesis and leaf water relations are related to changes in cell wall composition in Hordeum vulgare and Triticum aestivum subjected to water deficit stress. Plant Sci, 2021, 311: 111015. DOI:10.1016/j.plantsci.2021.111015 |
[16] |
Huang GJ, Peng SB, Li Y. Variation of photosynthesis during plant evolution and domestication: implications for improving crop photosynthesis. J Exp Bot, 2022, 73: 4886-96. DOI:10.1093/jxb/erac169 |
[17] |
Gago J, Carriquí M, Nadal M, et al. Photosynthesis optimized across land plant phylogeny. Trends Plant Sci, 2019, 24: 947-58. DOI:10.1016/j.tplants.2019.07.002 |
[18] |
Alonso Baez L, Bacete L. Cell wall dynamics: novel tools and research questions. J Exp Bot, 2023, 74: 6448-67. DOI:10.1093/jxb/erad310 |
[19] |
Cosgrove DJ. Building an extensible cell wall. Plant Physiol, 2022, 189: 1246-77. DOI:10.1093/plphys/kiac184 |
[20] |
Trinh DC, Alonso-Serra J, Asaoka M, et al. How mechanical forces shape plant organs. Curr Biol, 2021, 31: R143-59. DOI:10.1016/j.cub.2020.12.001 |
[21] |
Clemente-Moreno MJ, Gago J, Díaz-Vivancos P, et al. The apoplastic antioxidant system and altered cell wall dynamics influence mesophyll conductance and the rate of photosynthesis. Plant J, 2019, 99: 1031-46. DOI:10.1111/tpj.14437 |
[22] |
Liu XH, Li JZ, Zhao HY, et al. Novel tool to quantify cell wall porosity relates wall structure to cell growth and drug uptake. J Cell Biol, 2019, 218: 1408-21. DOI:10.1083/jcb.201810121 |
[23] |
Xiao CW, Zhang T, Zheng YZ, et al. Xyloglucan deficiency disrupts microtubule stability and cellulose biosynthesis in Arabidopsis, altering cell growth and morphogenesis. Plant Physiol, 2016, 170: 234-49. DOI:10.1104/pp.15.01395 |
[24] |
Roig-Oliver M, Bresta P, Nadal M, et al. Cell wall composition and thickness affect mesophyll conductance to CO2 diffusion in Helianthus annuus under water deprivation. J Exp Bot, 2020, 71: 7198-209. DOI:10.1093/jxb/eraa413 |
[25] |
Roig-Oliver M, Nadal M, Clemente-Moreno MJ, et al. Cell wall components regulate photosynthesis and leaf water relations of Vitis vinifera cv. Grenache acclimated to contrasting environmental conditions. J Plant Physiol, 2020, 244: 153084. DOI:10.1016/j.jplph.2019.153084 |
[26] |
Lundgren MR, Fleming AJ. Cellular perspectives for improving mesophyll conductance. Plant J, 2020, 101: 845-57. DOI:10.1111/tpj.14656 |
[27] |
Weraduwage SM, Kim SJ, Renna L, et al. Pectin methylesterification impacts the relationship between photosynthesis and plant growth. Plant Physiol, 2016, 171: 833-48. |
[28] |
Bidhendi AJ, Geitmann A. Relating the mechanics of the primary plant cell wall to morphogenesis. J Exp Bot, 2016, 67: 449-61. DOI:10.1093/jxb/erv535 |
[29] |
de Souza AJ, Pauly M. Comparative genomics of pectinacetylesterases: insight on function and biology. Plant Signal Behav, 2015, 10: e1055434. DOI:10.1080/15592324.2015.1055434 |
[30] |
Carriquí M, Roig‐Oliver M, Brodribb TJ, et al. Anatomical constraints to nonstomatal diffusion conductance and photosynthesis in lycophytes and bryophytes. New Phytol, 2019, 222: 1256-70. DOI:10.1111/nph.15675 |
[31] |
Sugiura D, Terashima I, Evans JR. A decrease in mesophyll conductance by cell wall thickening contributes to photosynthetic down-regulation. Plant Physiol, 2020, 183: 1600-11. DOI:10.1104/pp.20.00328 |
[32] |
Veromann-Jürgenson LL, Brodribb TJ, Niinemets Ü, et al. Variability in the chloroplast area lining the intercellular airspace and cell walls drives mesophyll conductance in gymnosperms. J Exp Bot, 2020, 71: 4958-71. DOI:10.1093/jxb/eraa231 |
[33] |
Knauer J, Cuntz M, Evans JR, et al. Contrasting anatomical and biochemical controls on mesophyll conductance across plant functional types. New Phytol, 2022, 236: 357-68. DOI:10.1111/nph.18363 |
[34] |
Lu ZF, Lu JW, Pan Y, et al. Anatomical variation of mesophyll conductance under potassium deficiency has a vital role in determining leaf photosynthesis: structural controls on gm under K deficiency. Plant Cell Environ, 2016, 39: 2428-39. DOI:10.1111/pce.12795 |
[35] |
Pang YD, Liao QH, Peng HG, et al. CO2 mesophyll conductance regulated by light: a review. Planta, 2023, 258: 11. DOI:10.1007/s00425-023-04157-5 |
[36] |
Xiong DL, Liu X, Liu LM, et al. Rapid responses of mesophyll conductance to changes of CO2 concentration, temperature and irradiance are affected by N supplements in rice. Plant Cell Environ, 2015, 38: 2541-50. DOI:10.1111/pce.12558 |
[37] |
Zou J, Hu W, Li YX, et al. Leaf anatomical alterations reduce cotton's mesophyll conductance under dynamic drought stress conditions. Plant J, 2022, 111: 391-405. DOI:10.1111/tpj.15794 |
[38] |
Oguchi R, Hikosaka K, Hiura T, et al. Leaf anatomy and light acclimation in woody seedlings after gap formation in a cool-temperate deciduous forest. Oecologia, 2006, 149: 571-82. DOI:10.1007/s00442-006-0485-1 |
[39] |
Tholen D, Boom C, Noguchi K, et al. The chloroplast avoidance response decreases internal conductance to CO2 diffusion in Arabidopsis thaliana leaves. Plant Cell Environ, 2008, 31: 1688-700. DOI:10.1111/j.1365-3040.2008.01875.x |
[40] |
Evans JR, Ca Emmerer SV, Setchell BA, et al. The relationship between CO2 transfer conductance and leaf anatomy in transgenic tobacco with a reduced content of Rubisco. Aust J Plant Physiol, 1994, 21: 475-95. |
[41] |
Tosens T, Niinemets Ü, Westoby M, et al. Anatomical basis of variation in mesophyll resistance in eastern Australian sclerophylls: news of a long and winding path. J Exp Bot, 2012, 63: 5105-19. DOI:10.1093/jxb/ers171 |
[42] |
Lei Z, Liu F, Wright IJ, et al. Comparisons of photosynthetic and anatomical traits between wild and domesticated cotton. J Exp Bot, 2021, erab293. |
[43] |
Uehlein N, Sperling H, Heckwolf M, et al. The Arabidopsis aquaporin PIP1;2 rules cellular CO2 uptake. Plant Cell Environ, 2012, 35: 1077-83. DOI:10.1111/j.1365-3040.2011.02473.x |
[44] |
Terashima I, Ono K. Effects of HgCl2 on CO2 dependence of leaf photosynthesis: evidence indicating Involvement of aquaporins in CO2 diffusion across the plasma membrane. Plant Cell Physiol, 2002, 43: 70-8. DOI:10.1093/pcp/pcf001 |
[45] |
Uehlein N, Lovisolo C, Siefritz F, et al. The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions. Nature, 2003, 425: 734-7. DOI:10.1038/nature02027 |
[46] |
Xu F, Wang K, Yuan W, et al. Overexpression of rice aquaporin OsPIP1;2 improves yield by enhancing mesophyll CO2 conductance and phloem sucrose transport. J Exp Bot, 2019, 70: 671-81. DOI:10.1093/jxb/ery386 |
[47] |
Uehlein N, Otto B, Hanson DT, et al. Function of Nicotiana tabacum aquaporins as chloroplast gas pores challenges the concept of membrane CO2 permeability. Plant Cell, 2008, 20: 648-57. DOI:10.1105/tpc.107.054023 |
[48] |
Zhang DL, Li YZ, Li YM. The potential implications of a plasma membrane aquaporin in improving CO2 transport capacity, photosynthetic potential and water use efficiency under contrasting CO2 source in Solanum lycopersicum (tomato). Sci Hortic, 2021, 283: 110122. DOI:10.1016/j.scienta.2021.110122 |
[49] |
Chen XC, Ma JB, Wang X, et al. Functional modulation of an aquaporin to intensify photosynthesis and abrogate bacterial virulence in rice. Plant J, 2021, 108: 330-46. DOI:10.1111/tpj.15427 |
[50] |
Mori IC, Rhee J, Shibasaka M, et al. CO2 transport by PIP2 aquaporins of barley. Plant Cell Physiol, 2014, 55: 251-7. DOI:10.1093/pcp/pcu003 |
[51] |
Kromdijk J, Głowacka K, Long SP. Photosynthetic efficiency and mesophyll conductance are unaffected in Arabidopsis thaliana aquaporin knock-out lines. J Exp Bot, 2019, erz442. DOI:10.1093/jxb/erz442 |
[52] |
Clarke VC, De Rosa A, Massey B, et al. Mesophyll conductance is unaffected by expression of Arabidopsis PIP1 aquaporins in the plasmalemma of Nicotiana. J Exp Bot, 2022, 73: 3625-36. DOI:10.1093/jxb/erac065 |
[53] |
Chen J, Yue K, Shen L, et al. Aquaporins and CO2 diffusion across biological membrane. Front Physiol, 2023, 14: 1205290. DOI:10.3389/fphys.2023.1205290 |
[54] |
Momayyezi M, Guy RD. Substantial role for carbonic anhydrase in latitudinal variation in mesophyll conductance of Populus trichocarpa Torr. & Gray. Plant Cell Environ, 2017, 40: 138-49. DOI:10.1111/pce.12851 |
[55] |
Momayyezi M, McKown AD, Bell SCS, et al. Emerging roles for carbonic anhydrase in mesophyll conductance and photosynthesis. Plant J, 2020, 101: 831-44. DOI:10.1111/tpj.14638 |
[56] |
Hines KM, Chaudhari V, Edgeworth KN, et al. Absence of carbonic anhydrase in chloroplasts affects C3 plant development but not photosynthesis. Proc Natl Acad Sci U S A, 2021, 118: e2107425118. DOI:10.1073/pnas.2107425118 |
[57] |
Price GD, Caemmerer SV, Evans JR, et al. Specific reduction of chloroplast carbonic anhydrase activity by antisense RNA in transgenic tobacco plants has a minor effect on photosynthetic CO2 assimilation. Planta, 1994, 193: 331-40. DOI:10.1007/BF00201810 |
[58] |
Tholen D, Zhu XG. The mechanistic basis of internal conductance: a theoretical analysis of mesophyll cell photosynthesis and CO2 diffusion. Plant Physiol, 2011, 156: 90-105. DOI:10.1104/pp.111.172346 |
[59] |
Gillon JS, Yakir D. Internal conductance to CO2 diffusion and C18OO discrimination in C3 leaves. Plant Physiol, 2000, 123: 201-14. DOI:10.1104/pp.123.1.201 |
[60] |
Flexas J, Carriquí M. Photosynthesis and photosynthetic efficiencies along the terrestrial plant's phylogeny: lessons for improving crop photosynthesis. Plant J, 2020, 101: 964-78. DOI:10.1111/tpj.14651 |
[61] |
Delgado‐Baquerizo M, Reich PB, García‐Palacios P, et al. Biogeographic bases for a shift in crop C: N: P stoichiometries during domestication. Ecol Lett, 2016, 19: 564-75. DOI:10.1111/ele.12593 |
[62] |
Larson G, Piperno DR, Allaby RG, et al. Current perspectives and the future of domestication studies. Proc Natl Acad Sci U S A, 2014, 111: 6139-46. DOI:10.1073/pnas.1323964111 |
[63] |
Lei ZY, He Y, Li XF, et al. Domestication has reduced leaf water use efficiency associated with the anatomy of abaxial stomata in cotton. J Exp Bot, 2023, 74: 878-88. DOI:10.1093/jxb/erac447 |
[64] |
Pujol B, Mühlen G, Garwood N, et al. Evolution under domestication: contrasting functional morphology of seedlings in domesticated cassava and its closest wild relatives. New Phytol, 2005, 166: 305-18. DOI:10.1111/j.1469-8137.2004.01295.x |
[65] |
Milla R, Osborne CP, Turcotte MM, et al. Plant domestication through an ecological lens. Trends Ecol Evol, 2015, 30: 463-9. DOI:10.1016/j.tree.2015.06.006 |
[66] |
Nadal M, Flexas J. Variation in photosynthetic characteristics with growth form in a water-limited scenario: implications for assimilation rates and water use efficiency in crops. Agric Water Manag, 2019, 216: 457-72. DOI:10.1016/j.agwat.2018.09.024 |
[67] |
Eriksen RL, Adhikari ND, Mou B. Comparative photosynthesis physiology of cultivated and wild lettuce under control and low‐water stress. Crop Sci, 2020, 60: 2511-26. DOI:10.1002/csc2.20184 |
[68] |
Brestic M, Zivcak M, Hauptvogel P, et al. Wheat plant selection for high yields entailed improvement of leaf anatomical and biochemical traits including tolerance to non-optimal temperature conditions. Photosynth Res, 2018, 136: 245-55. DOI:10.1007/s11120-018-0486-z |
[69] |
Ikawa H, Sakai H, Chen CP, et al. High mesophyll conductance in the high-yielding rice cultivar Takanari quantified with the combined gas exchange and chlorophyll fluorescence measurements under free-air CO2 enrichment. Plant Product Sci, 2019, 22: 395-406. DOI:10.1080/1343943X.2019.1626253 |
[70] |
Scafaro AP, Von Caemmerer S, Evans JR, et al. Temperature response of mesophyll conductance in cultivated and wild Oryza species with contrasting mesophyll cell wall thickness. Plant Cell Environ, 2011, 34: 1999-2008. DOI:10.1111/j.1365-3040.2011.02398.x |
[71] |
Onoda Y, Wright IJ, Evans JR, et al. Physiological and structural tradeoffs underlying the leaf economics spectrum. New Phytol, 2017, 214: 1447-63. DOI:10.1111/nph.14496 |
[72] |
Terashima I, Hanba YT, Tholen D, et al. Leaf functional anatomy in relation to photosynthesis. Plant Physiol, 2011, 155: 108-16. DOI:10.1104/pp.110.165472 |
[73] |
Ren T, Weraduwage SM, Sharkey TD. Prospects for enhancing leaf photosynthetic capacity by manipulating mesophyll cell morphology. J Exp Bot, 2019, 70: 1153-65. DOI:10.1093/jxb/ery448 |
[74] |
Giuliani R, Koteyeva N, Voznesenskaya E, et al. Coordination of leaf photosynthesis, transpiration, and structural traits in rice and wild relatives (Genus Oryza). Plant Physiol, 2013, 162: 1632-51. DOI:10.1104/pp.113.217497 |
[75] |
Scafaro AP, Gallé A, Van Rie J, et al. Heat tolerance in a wild Oryza species is attributed to maintenance of Rubisco activation by a thermally stable Rubisco activase ortholog. New Phytol, 2016, 211: 899-911. DOI:10.1111/nph.13963 |
[76] |
Carriquí M, Cabrera HM, Conesa MÀ, et al. Diffusional limitations explain the lower photosynthetic capacity of ferns as compared with angiosperms in a common garden study. Plant Cell Environ, 2015, 38: 448-60. DOI:10.1111/pce.12402 |
[77] |
Li S lan, Tan TT, Fan YF, et al. Responses of leaf stomatal and mesophyll conductance to abiotic stress factors. J Int Agric, 2022, 21: 2787-804. DOI:10.1016/j.jia.2022.07.036 |
[78] |
李勇, 彭少兵, 黄见良, 等. 叶肉导度的组成、大小及其对环境因素的响应. 植物生理学报, 2013, 49: 1143-54. |
[79] |
韩吉梅, 张旺锋, 熊栋梁, 等. 植物光合作用叶肉导度及主要限制因素研究进展. 植物生态学报, 2017, 41: 914-24. DOI:10.17521/cjpe.2016.0337 |
[80] |
Alonso-Forn D, Peguero-Pina JJ, Ferrio JP, et al. Contrasting functional strategies following severe drought in two Mediterranean oaks with different leaf habit: Quercus faginea and Quercus ilex subsp. rotundifolia. Tree Physiol, 2021, 41: 371-87. DOI:10.1093/treephys/tpaa135 |
[81] |
Han JM, Lei ZY, Zhang YJ, et al. Drought-introduced variability of mesophyll conductance in Gossypium and its relationship with leaf anatomy. Physiol Plant, 2019, 166: 873-87. DOI:10.1111/ppl.12845 |
[82] |
Momayyezi M, Borsuk AM, Brodersen CR, et al. Desiccation of the leaf mesophyll and its implications for CO2 diffusion and light processing. Plant Cell Environ, 2022, 45: 1362-81. DOI:10.1111/pce.14287 |
[83] |
Ouyang W, Struik PC, Yin X, et al. Stomatal conductance, mesophyll conductance, and transpiration efficiency in relation to leaf anatomy in rice and wheat genotypes under drought. J Exp Bot, 2017, 68: 5191-205. DOI:10.1093/jxb/erx314 |
[84] |
Flexas J, Barón M, Bota J, et al. Photosynthesis limitations during water stress acclimation and recovery in the drought-adapted Vitis hybrid Richter-110 (V. berlandieri×V. rupestris). J Exp Bot, 2009, 60: 2361-77. DOI:10.1093/jxb/erp069 |
[85] |
Li Y, Ren BB, Yang XX, et al. Chloroplast downsizing under nitrate nutrition restrained mesophyll conductance and photosynthesis in rice (Oryza sativa L.) under drought conditions. Plant Cell Physiol, 2012, 53: 892-900. DOI:10.1093/pcp/pcs032 |
[86] |
王乐乐, 王权, 黄亚茹, 等. 水稻叶片气孔导度及叶肉导度对干旱胁迫的响应机理研究进展. 生命科学, 2022, 34: 448-58. |
[87] |
Tosens T, Niinemets Ü, Vislap V, et al. Developmental changes in mesophyll diffusion conductance and photosynthetic capacity under different light and water availabilities in Populus tremula: how structure constrains function. Plant Cell Environ, 2012, 35: 839-56. DOI:10.1111/j.1365-3040.2011.02457.x |
[88] |
Niinemets Ü, Díaz-Espejo A, Flexas J, et al. Role of mesophyll diffusion conductance in constraining potential photosynthetic productivity in the field. J Exp Bot, 2009, 60: 2249-70. DOI:10.1093/jxb/erp036 |
[89] |
Xiong D. Leaf anatomy does not explain the large variability of mesophyll conductance across C3 crop species. Plant J, 2023, 113: 1035-48. DOI:10.1111/tpj.16098 |
[90] |
Perez-Martin A, Michelazzo C, Torres-Ruiz JM, et al. Regulation of photosynthesis and stomatal and mesophyll conductance under water stress and recovery in olive trees: correlation with gene expression of carbonic anhydrase and aquaporins. J Exp Bot, 2014, 65: 3143-56. DOI:10.1093/jxb/eru160 |
[91] |
Reddy KS, Sekhar KM, Reddy AR. Genotypic variation in tolerance to drought stress is highly coordinated with hydraulic conductivity-photosynthesis interplay and aquaporin expression in field-grown mulberry (Morus spp.). Tree Physiol, 2017, 37: 926-37. DOI:10.1093/treephys/tpx051 |
[92] |
Miyazawa SI, Yoshimura S, Shinzaki Y, et al. Relationship between mesophyll conductance to CO2 diffusion and contents of aquaporin localized at plasma membrane in tobacco plants grown under drought conditions[M]// Allen JF, Gantt E, Golbeck JH, et al. Photosynthesis. Energy from the sun. Dordrecht: Springer Netherlands, 2008: 805-8
|
[93] |
Nadal M, Flexas J, Carriquí M. Mesophyll conductance to CO2 diffusion in a climate change scenario: effects of elevated CO2, temperature and water stress[M]//Becklin KM. Photosynthesis, respiration, and climate change. Cham: Springer International Publishing, 2018: 49-78
|
[94] |
Flexas J, Ribas-Carbó M, Diaz-Espejo A, et al. Mesophyll conductance to CO2: current knowledge and future prospects. Plant Cell Environ, 2008, 31: 602-21. DOI:10.1111/j.1365-3040.2007.01757.x |
[95] |
Huang GJ, Zhang QQ, Yang YH, et al. Interspecific variation in the temperature response of mesophyll conductance is related to leaf anatomy. Plant J, 2022, 112: 221-34. DOI:10.1111/tpj.15942 |
[96] |
Shrestha A, Song X, Barbour MM. The temperature response of mesophyll conductance, and its component conductances, varies between species and genotypes. Photosynth Res, 2019, 141: 65-82. DOI:10.1007/s11120-019-00622-z |
[97] |
Von Caemmerer S, Evans JR. Temperature responses of mesophyll conductance differ greatly between species. Plant Cell Environ, 2015, 38: 629-37. DOI:10.1111/pce.12449 |
[98] |
Bernacchi CJ, Portis AR, Nakano H, et al. Temperature response of mesophyll conductance. implications for the determination of rubisco enzyme kinetics and for limitations to photosynthesis in vivo. Plant Physiol, 2002, 130: 1992-8. DOI:10.1104/pp.008250 |
[99] |
Warren C. Temperature response of photosynthesis and internal conductance to CO2: results from two independent approaches. J Exp Bot, 2006, 57: 3057-67. DOI:10.1093/jxb/erl067 |
[100] |
Li Y, Song X, Li S, et al. The role of leaf water potential in the temperature response of mesophyll conductance. New Phytol, 2020, 225: 1193-205. DOI:10.1111/nph.16214 |
[101] |
Warren CR. Stand aside stomata, another actor deserves centre stage: the forgotten role of the internal conductance to CO2 transfer. J Exp Bot, 2007, 59: 1475-87. DOI:10.1093/jxb/erm245 |
[102] |
Laisk A, Eichelmann H, Oja V, et al. Adjustment of leaf photosynthesis to shade in a natural canopy: rate parameters. Plant Cell Environ, 2005, 28: 375-88. DOI:10.1111/j.1365-3040.2004.01274.x |
[103] |
Hanba YT, Kogami H, Terashima I. The effect of growth irradiance on leaf anatomy and photosynthesis in Acer species differing in light demand. Plant Cell Environ, 2002, 25: 1021-30. DOI:10.1046/j.1365-3040.2002.00881.x |
[104] |
Piel C. Effect of local irradiance on CO2 transfer conductance of mesophyll in walnut. J Exp Bot, 2002, 53: 2423-30. DOI:10.1093/jxb/erf095 |
[105] |
Terashima I, Hanba YT, Tazoe Y, et al. Irradiance and phenotype: comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion. J Exp Bot, 2006, 57: 343-54. DOI:10.1093/jxb/erj014 |
[106] |
Zhang YJ, Han JM, Lei ZY, et al. Systematical regulation involved in heterogeneous photosynthetic characteristics of individual leaf in pima cotton. J Integr Agric, 2022, 21: 995-1003. DOI:10.1016/S2095-3119(20)63565-1 |
[107] |
Carriquí M, Nadal M, Flexas J. Acclimation of mesophyll conductance and anatomy to light during leaf aging in Arabidopsis thaliana. Physiol Plant, 2021, 172: 1894-907. DOI:10.1111/ppl.13398 |
[108] |
Oguchi R, Hikosaka K, Hirose T. Does the photosynthetic light-acclimation need change in leaf anatomy?. Plant Cell Environ, 2003, 26: 505-12. DOI:10.1046/j.1365-3040.2003.00981.x |
[109] |
Poorter H, Niinemets Ü, Ntagkas N, et al. A meta‐analysis of plant responses to light intensity for 70 traits ranging from molecules to whole plant performance. New Phytol, 2019, 223: 1073-105. DOI:10.1111/nph.15754 |
[110] |
Munekage YN, Inoue S, Yoneda Y, et al. Distinct palisade tissue development processes promoted by leaf autonomous signalling and long-distance signalling in Arabidopsis thaliana: light signalling in palisade tissue cell development. Plant Cell Environ, 2015, 38: 1116-26. DOI:10.1111/pce.12466 |
[111] |
Terashima I, Miyazawa SI, Hanba YT. Why are sun leaves thicker than shade leaves? Consideration based on analyses of CO2 diffusion in the leaf. J Plant Res, 2001, 114: 93-105. DOI:10.1007/PL00013972 |
[112] |
Fini A, Loreto F, Tattini M, et al. Mesophyll conductance plays a central role in leaf functioning of Oleaceae species exposed to contrasting sunlight irradiance. Physiol Plant, 2016, 157: 54-68. DOI:10.1111/ppl.12401 |
[113] |
Peguero-Pina JJ, Sancho-Knapik D, Flexas J, et al. Light acclimation of photosynthesis in two closely related firs (Abies pinsapo Boiss. and Abies alba Mill.): the role of leaf anatomy and mesophyll conductance to CO2. Tree Physiol, 2016, 36: 300-10. DOI:10.1093/treephys/tpv114 |
[114] |
Douthe C, Dreyer E, Epron D, et al. Mesophyll conductance to CO2, assessed from online TDL-AS records of 13CO2 discrimination, displays small but significant short-term responses to CO2 and irradiance in Eucalyptus seedlings. J Exp Bot, 2011, 62: 5335-46. DOI:10.1093/jxb/err141 |
[115] |
Douthe C, Dreyer E, Brendel O, et al. Is mesophyll conductance to CO2 in leaves of three Eucalyptus species sensitive to short-term changes of irradiance under ambient as well as low O2?. Func Plant Biol, 2012, 39: 435-48. DOI:10.1071/FP11190 |
[116] |
Flexas J, Diaz‐Espejo A, Galmés J, et al. Rapid variations of mesophyll conductance in response to changes in CO2 concentration around leaves. Plant Cell Environ, 2007, 30: 1284-98. DOI:10.1111/j.1365-3040.2007.01700.x |
[117] |
Hassiotou F, Ludwig M, Renton M, et al. Influence of leaf dry mass per area, CO2, and irradiance on mesophyll conductance in sclerophylls. J Exp Bot, 2009, 60: 2303-14. DOI:10.1093/jxb/erp021 |
[118] |
Tazoe Y, Von Caemmerer S, Badger MR, et al. Light and CO2 do not affect the mesophyll conductance to CO2 diffusion in wheat leaves. J Exp Bot, 2009, 60: 2291-301. DOI:10.1093/jxb/erp035 |
[119] |
Yamori W, Evans JR, Von Caemmerer S. Effects of growth and measurement light intensities on temperature dependence of CO2 assimilation rate in tobacco leaves. Plant Cell Environ, 2010, 33: 332-43. DOI:10.1111/j.1365-3040.2009.02067.x |
[120] |
Yang YJ, Hu H, Huang W. The light dependence of mesophyll conductance and relative limitations on photosynthesis in evergreen sclerophyllous Rhododendron Species. Plants, 2020, 9: 1536. DOI:10.3390/plants9111536 |
[121] |
Tholen D, Ethier G, Genty B, et al. Variable mesophyll conductance revisited: theoretical background and experimental implications. Plant Cell Environ, 2012, 35: 2087-103. DOI:10.1111/j.1365-3040.2012.02538.x |
[122] |
Carriquí M, Douthe C, Molins A, et al. Leaf anatomy does not explain apparent short‐term responses of mesophyll conductance to light and CO2 in tobacco. Physiol Plant, 2019, 165: 604-18. DOI:10.1111/ppl.12755 |
[123] |
Lu ZF, Ren T, Li J, et al. Nutrition-mediated cell and tissue-level anatomy triggers the covariation of leaf photosynthesis and leaf mass per area. J Exp Bot, 2020, 71: 6524-37. DOI:10.1093/jxb/eraa356 |
[124] |
Bown HE, Watt MS, Mason EG, et al. The influence of nitrogen and phosphorus supply and genotype on mesophyll conductance limitations to photosynthesis in Pinus radiata. Tree Physiol, 2009, 29: 1143-51. DOI:10.1093/treephys/tpp051 |
[125] |
Li Y, Gao Y, Xu X, et al. Light-saturated photosynthetic rate in high-nitrogen rice (Oryza sativa L.) leaves is related to chloroplastic CO2 concentration. J Exp Bot, 2009, 60: 2351-60. DOI:10.1093/jxb/erp127 |
[126] |
Gao LM, Lu ZF, Ding L, et al. Role of aquaporins in determining carbon and nitrogen status in higher plants. Int J Mol Sci, 2018, 19: 35. DOI:10.3390/ijms19010035 |
[127] |
Hacke UG, Plavcova L, Almeida-Rodriguez A, et al. Influence of nitrogen fertilization on xylem traits and aquaporin expression in stems of hybrid poplar. Tree Physiol, 2010, 30: 1016-25. DOI:10.1093/treephys/tpq058 |
[128] |
Ligaba A, Katsuhara M, Shibasaka M, et al. Abiotic stresses modulate expression of major intrinsic proteins in barley (Hordeum vulgare). C R Biol, 2011, 334: 127-39. |
[129] |
Jin SH, Huang JQ, Li XQ, et al. Effects of potassium supply on limitations of photosynthesis by mesophyll diffusion conductance in Carya cathayensis. Tree Physiol, 2011, 31: 1142-51. DOI:10.1093/treephys/tpr095 |
[130] |
Hu WS, Lu ZF, Meng FJ, et al. The reduction in leaf area precedes that in photosynthesis under potassium deficiency: the importance of leaf anatomy. New Phytol, 2020, 227: 1749-63. DOI:10.1111/nph.16644 |
[131] |
Hu WS, Lu ZF, Gu HH, et al. Potassium availability influences the mesophyll structure to coordinate the conductance of CO2 and H2O during leaf expansion. Plant Cell Environ, 2022, 45: 2987-3000. DOI:10.1111/pce.14405 |
[132] |
Hu W, Lu Z, Meng F, et al. Potassium modulates central carbon metabolism to participate in regulating CO2 transport and assimilation in Brassica napus leaves. Plant Sci, 2021, 307: 110891. DOI:10.1016/j.plantsci.2021.110891 |
[133] |
Singh SK, Reddy VR, Fleisher DH, et al. Interactive effects of temperature and phosphorus nutrition on soybean: leaf photosynthesis, chlorophyll fluorescence, and nutrient efficiency. Photosynthetica, 2019, 57: 248-57. DOI:10.32615/ps.2019.036 |
[134] |
Wang J, Chen Y, Wang P, et al. Leaf gas exchange, phosphorus uptake, growth and yield responses of cotton cultivars to different phosphorus rates. Photosynthetica, 2018, 56: 1414-21. DOI:10.1007/s11099-018-0845-1 |
[135] |
Chu SS, Li HY, Zhang XQ, et al. Physiological and proteomics analyses reveal low-phosphorus stress affected the regulation of photosynthesis in soybean. IJMS, 2018, 19: 1688. DOI:10.3390/ijms19061688 |